Utilization of Resourcesat LISS IV Data for Infrastructure Updation and Land Use/Land Cover Mapping - A Case Study from Simlipal Block, Bankura District, W. Bengal

V. S. S. Kiran, Y. K. Srivastava, M. Jagannadha Rao

Abstract


Rapid population growth and anthropogenic activities on earth is effecting the natural environment profoundly. Hence, an attempt has been made in this paper; a case study has been taken up for Simlipal block of Bankura District of W. Bengal. This is to understand changes in Land use/Land cover and infrastructure development particularly in plain and community development area. For this purpose the infrastructure, Land use/Land cover, drainage, slope, aspect and contour maps have been prepared using SRTM (54/08) data of the study area. Besides this an attempt has been made to prepare LU/LC maps from multispectral remote sensing digital data sets of IRS-1C LISS-III & IRS-P6 LISS-IV, applying DIP techniques and Alarm masking technique for MAXLIK & MINPAR supervised classification as well as to prepare Infrastructure map applying to raster based vector classification and spatial data extraction method. NDVI method was used for the classification of water and forest classes. It is established that the Infrastructure output map and Land use/Land cover output maps can be used for systematic urban development of the study area.



Keywords


Alarm Masking; LU/LC Classification; Arc GIS; ERDAS

Full Text: PDF

Refbacks

  • There are currently no refbacks.


Bookmark and Share


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

*2016 Journal Impact Factor was established by dividing the number of articles published in 2014 and 2015 with the number of times they are cited in 2016 based on Google Scholar, Google Search and the Microsoft Academic Search. If ‘A’ is the total number of articles published in 2014 and 2015, and ‘B’ is the number of times these articles were cited in indexed publications during 2016 then, journal impact factor = A/B. To know More: (http://en.wikipedia.org/wiki/Impact_factor)