
Cloud Publications  
International Journal of Advanced Remote Sensing and GIS 
2016, Volume 5, Issue 10, pp. 1946-1962  
ISSN 2320 - 0243, Crossref: 10.23953/cloud.ijarsg.73 
______________________________________________________________________________________________________

Flood Susceptibility Appraisal in Ponnaiyar River Basin, India using 

Frequency Ratio (FR) and Shannon’s Entropy (SE) Models 

Jothibasu A. and Anbazhagan S. 

Centre for Geoinformatics and Planetary Studies, Department of Geology, Periyar University, Salem, India 

Publication Date: 14 October 2016  

DOI: https://doi.org/10.23953/cloud.ijarsg.73 

Copyright © 2016 Jothibasu A. and Anbazhagan S. This is an open access article distributed under the Creative 

Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 

provided the original work is properly cited. 

Abstract In any Watershed management studies, demarcation of flood prone area is one of the key 

tasks. Flood management is essential to shrink the flood effects on human lives and livelihoods. Main 

goal of the present research is to investigate the application of the Frequency Ratio (FR) and 

Shannon’s Entropy (SE) models for flood susceptibility appraisal of Ponnaiyar River basin in Tamil 

Nadu, India. Initially, the flood inventory map was prepared using overlay analysis (slope, 20 meter 

contour intervals and drainage patterns) and extensive field surveys. In total, 136 flood locations were 

noted in the study area. Out of these, 95 (70%) floods were randomly selected as training data and the 

remaining 41 (30%) floods were used for the validation purposes. Further, flood conditioning factors 

such as lithology, land-use, distance from rivers, soil depth, rainfall, slope angle, slope aspect, 

curvature, topographic wetness index (TWI) and altitude were prepared from the spatial database. 

Then, the receiver operating characteristic (ROC) curves were drawn for produced flood susceptibility 

maps and the area under the curves (AUCs) was computed. The final results indicated that the FR 

(AUC = 80.20%) and SE (AUC = 79.30%) models have almost similar and reasonable results. 

Therefore, these flood susceptibility maps can be useful for researchers and planner in flood mitigation 

strategies. 
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1. Introduction

Flood is one of the most common natural disaster events and it creates many environmental problems 

due to rapid urban growth and climate change (Kjeldsen, 2010). A deep tropical depression came 

through the Bay of Bengal and hit the south-eastern coast of India on 10-11 November 2015, causing 

heavy rain. Heavy rain resumed during Nov 16-19, with 30-37 cm of rain accumulating over the 9-day 

period. After pausing for several days, heavy rains have resumed in early December and in some 

locations rain is projected to continue until 8-10 December. Chennai received over 33 cm of rain in a 

24-hour period from December 1-2, causing widespread flooding and damage. In Tamil Nadu,

Chennai city, Cuddalore, Kanchipuram, and Tiruvallur districts are worst affected. Reports are

estimating 347 people have lost their lives in Tamil Nadu which can be more. The floods which

occurred are the worst in 100 years and the people got stranded in the midnight since flood water

entered into the houses while they are asleep, especially in Chennai. The Government of India has
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declared Chennai a National Disaster zone, and National Disaster Response Force carried out rescue 

operations in the city (JNA, 2015). It is motivated to demarcate flood prone area in the study area. 

Early warnings and emergency responses to floods are needed, so that governments and agencies 

can prevent as much damage as possible (Feng and Wang, 2011). In natural hazards research, 

enormous databases are habitually needed (Regmi et al., 2013). These are not easy to collect, and in 

some cases a lack of appropriate data can hamper research (Liu and De Smedt, 2004). Natural factors 

such as hydrological and meteorological characteristics, soil types, geological structures, 

geomorphology, and vegetation are the most influential contributors to flooding. Human interference in 

natural cycles by cutting trees and building with impervious materials can accelerate flooding.  

 

From sustainable development point of view, the flood hazard management is very essential for future 

(Feng & Wang, 2011; Esteves, 2013; Schober et al., 2015). However, negative consequences of flood 

can be applied by integrated approaches to flood hazard management (Anbazhagan and Dash, 2003; 

Masood & Takeuchi, 2012; Jourde et al., 2014). Remote sensing techniques coupling with GIS tools 

can provide a good platform to combine, manipulate and analyses the information for the 

determination of potential hazard areas very quickly and more efficiently (Saha et al., 2005; Pradhan et 

al., 2011; Devkota et al., 2013; Wang et al., 2013; Pourghasemi et al., 2014). The most popular 

methods in natural hazard modeling are ANN (Pradhan and Buchroithner, 2010; Pradhan et al., 

2010b), analytic hierarchy process (AHP) (Yalcin, 2008), frequency ratio (FR) (Pradhan et al., 2011), 

logistic regression (LR) (Pradhan, 2010a,b) and fuzzy logic (Pradhan, 2011). Shafapour Tehrany et al. 

(2013) compared the prediction performances of two different methods such as rule-based decision 

tree and combination of FR and logistic regression statistical models for flood susceptibility mapping at 

Kelantan, Malaysia. Their result demonstrated that the area under the curve (AUC) for decision tree 

and the ensemble FR and LR models was 87 and 90%, respectively. Lee et al. (2012a) applied FR 

model for flood susceptibility mapping in Busan, South Korea. The results showed that FR model is 

very efficient for flood susceptibility modeling. Shannon’s entropy is the average unpredictability in a 

random variable, which is equivalent to its information content. The entropy of flood refers to the extent 

that the various controlling flood occurrences influence the flood susceptibility. Several influencing 

factors give extra entropy into the index system. Therefore, the entropy value can be used to calculate 

objective weights of the index system (Jaafari et al., 2014). The main objective of the present research 

was to assess and compare flood susceptibility maps produced using two statistical GIS-based 

approaches, i.e. FR and SE models in the Ponnaiyar river basin, Tamil Nadu, India. 

 

2. Study Area 

 

Ponnaiyar River basin an interstate river is one of the largest rivers of the state of Tamil Nadu, often 

reverently called ‘Little Ganga of the South’. The river has supported may a civilizations of peninsular 

India across the history and continues to play a vital role in supplying precious water for drinking, 

irrigation and industry to the people of the states of Karnataka, Tamil Nadu and Pondicherry. The 

study area extends over approximately of 11,595 sq.km, and lies between 11˚35’ and 12˚35’ N 

latitudes and 77˚45’ and 79˚55’ E longitudes (Figure 1). Ponnaiyar River originates on the south 

eastern slopes of Chennakesava Hills, northwest of Nandidurg of Kolar district in Karnataka State at 

an altitude of 1000m above mean sea level (amsl). The total length of Ponnaiyar River is 432km of 

which 85km lies in Karnataka state, 187km in Dharmapuri, Krishnagiri and Salem districts, 54km in 

Thiruvannamalai and Vellore districts and 106km in Cuddalore and Villupuram districts of Tamil Nadu. 

The Cuddalore and Villupuram districts are the most affected flood area in the river basin. The first 

spell witnessed intensive flooding in Cuddalore where most of the water bodies were full and the 

associated breaching affected the communities’ life damaging houses and infrastructure etc., (Figure 

2). The Ponnaiyar basin is predominantly built up with granite and gneisses rocks of Archean period. 

The fifteen years (2000-2014) average annual rainfall in the basin is 969 mm. The climate in general is 

hot; April and May being the hottest months of the year when the temperature rises to 34˚C. 
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Figure 1: Study area and flood locations of Ponnaiyar river basin 

 

 
 

Figure 2: Photographs shows the severity of the flood that occurred in 2015 

 

3. Data Used and Methodology 

 

3.1. Identify Flood Locations 

 

A basin level flood-prone area map provides the regional level planners and decision makers with 

information useful in formulating broad policies to guide the future development of flood plains. In the 

context, the flood-prone map was prepared using SRTM satellite data were applied to create a digital 

elevation model (DEM) of the study area with spatial resolution of 90 m. The slope and contour maps 

were prepared using DEM. Which include contour lines with 20 m interval connecting points on the 

ground surface that have the same elevation showing the configuration and elevation of the land 
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surface. The areas subject to flooding were delineated from readily available information for quick 

appraisal rather than by detailed field surveys. 

 

3.2. Flood Conditioning Factors 

 

In order to execute flood susceptibility mapping it is necessary to find out the flood conditioning factors 

(Kia et al., 2012). Therefore, a flood related spatial database should be created. Through the 

knowledge gathered from the literature review and field investigation the conditioning factors were 

chosen (Smith and Ward, 1998). Hence, ten flood conditioning factors such as lithology, land use / 

land cover (LULC), soil depth, distance from main river, rainfall, altitude, curvature, slope, topographic 

wetness index (TWI) and aspect were selected for the susceptibility analysis and the spatial database 

of these factors was compiled. The lithology is considered as one of the most important indicators of 

hydro-geological features which play a fundamental role in both the porosity and permeability of 

aquifer materials (Ayazi et al., 2010; Charon, 1974). The analog lithology map (1:100,000) was 

obtained from the Geological Survey of India (GSI, 1998) and the digital lithology map was generated 

using ArcGIS 9.3 (Figure 3a). According to Geological Survey of India the lithology of the study area is 

varied and covered by twenty two rock types.  

 

Land use types play a significant role, which directly or indirectly influence on some of hydrological 

processes components such as infiltration, evapotranspiration and run-off generation. Land use types 

within the study area are agriculture land, built-up land, forest cover, river, water body, barren land, 

and grass land (Figure 3b). Built-up areas, which are mostly made by impervious surfaces, increase 

the storm run-off and inundation (Shafapour Tehrany et al., 2013). On the other hand, agricultural 

areas are less prone to flooding due to the positive relationship between infiltration capability and 

vegetation density. The land use / land cover map was prepared from IRS P6 LISS III image through 

supervised classification using maximum likelihood algorithm, and false color composite (FCC) 

techniques in ENVI 4.3 software.  

 

Distance from main rivers play significant roles in hydro-geological systems. It is one of the main 

conditioning factors due to its impact on the flood magnitude (Glenn et al., 2012). It is controls the 

stability of a slope is the saturation degree of the material on the slope. The closeness of the slope to 

drainage structures is another important factor in terms of stability. Streams may adversely affect 

stability by eroding the slopes or by saturating the lower part of material until resulting in water level 

increases (Gokceoglu and Aksoy, 1996). The distance from river map was produced using the buffer 

tool in ArcGIS 9.3 and was classified into five classes (Figure 3c). Soil is a complex biogeochemical 

material on which plants may grow. Information on the type of soil is often needed as a basic input in 

hydrologic evaluation. Mapping soil usually involves delineating soil types that have identifiable 

characteristics. The delineation is based on many factors garment to soil science such as 

geomorphologic origin and conditions under which the soil formed (Vieux, 2004). Soil depth is one of 

the most important factors in the surface and subsurface runoff generation and infiltration process 

(Mogaji et al., 2014). The soil depth map was obtained from the Central Groundwater Board (CGWB, 

2012). There are four classes of soil depth in the study area (Figure 3d). 

 

The monsoon flooding takes place after heavy rain, so this factor should be considered as one of the 

main contributors in flood occurrence (Bajabaa et al., 2013). The monthly records of rainfall amount for 

thirty rain-gauge stations within the study area for a period of 15 years (2000–2014) were obtained 

from the Tamil Nadu State Surface and Groundwater Division database. The resulting map was 

classified into five major classes: 688-850, 850-923, 923-987, 987-1046 and 1046-1195 mm/year 

(Figure 3e). Average annual rainfall in the study area varies in the range of 688 mm to 1195 mm. North 

eastern and south western part receive high rainfall (>987mm) whereas southeastern and 

northwestern part receive low rainfall (<923mm). 
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The slope map of the study area was generated based on DEM using the Spatial Analysis tools in 

ArcGIS 9.3. Based on the quantile classification scheme (Tehrany et al., 2014), the slope angle map 

was grouped into six classes such as <7˚, 7˚-15˚, 15˚-20˚, 20˚-25˚, 25˚-30˚ and >30˚ (Figure 3f). 

Aspect is related to the main precipitation direction and the physiographic trends (Ercanoglu and 

Gokceoglu, 2002). Slope aspect layer was extracted from DEM and divided into nine classes including 

ten directions and flat based on normal or common standard classification (Figure 3g). Curvature, (Tc) 

was calculated from the DEM (Figure 3h). The map comprises five classes ranging from very high 

class to very low class. Negative values for curvature (<−2) correspond concave and accumulation 

zones, zero values for curvature represent the flat and transitional zones and the positive values for 

curvature represent the convex and dissipation zones (Florinsky, 2000).  

 

Topographic Wetness Index (TWI) has been widely used to explain the impact of topography 

conditions on the location and size of saturated source zones of surface runoff generation. It is defined 

as (Moore et al., 1991): 

 

       
  
    

       

 

Where, AS is the cumulative upslope area draining through a point (per unit contour length) and β is 

the slope gradient (in degree) 

 

In this study, TWI map is grouped into four classes using quantile classification scheme (Tehrany et 

al., 2014) (Figure 3i). The tendency of water to accumulate at any point in the catchment (in terms of 

α) and the tendency of gravitational forces to move that water down slope (indicated in terms of tan b 

as an approximate hydraulic gradient) are considered by the ln β tanα index. Primarily, the water 

infiltration depends upon material properties such as permeability and pours water pressure on the soil 

strength.  

 

Different altitudes have altered climate conditions, and this caused differences in soil condition and 

vegetation type (Aniya, 1985). Altitude map of the study area was created from the DEM. The altitude 

map was grouped into six classes: -4 to 205 m, 205–386 m, 386-556 m, 556–750 m, 750–1009 m, and 

1009-1635 m based on the quantile classification method (Figure 3j) (Tehrany et al., 2013). 

 

3.3 Frequency Ratio (FR) Model 

 

Frequency ratio (FR) model is a bivariate statistical approach which can be used as a useful 

geospatial assessment tool to determine the probabilistic relationship between dependent and 

independent variables, including multi-classified maps (Oh et al., 2011). Recently, FR model has been 

successfully used for flood susceptibility mapping by Tehrany et al. (2014a), Rahmati et al. (2015). In 

fact, the FR is defined as the ratio of the area where flood occurred in the total study area. FR model 

structure is based on the correlation and observed relationships between each flood conditioning 

factor and distribution of flood locations. FR value in each class of the groundwater-related factor can 

be expressed based on Eq. 2: 

 

    
 
  

 
  
            

Where,   

A is the number of flood training set for each factor;  

B is the number of total flood training set in study area;  

C is the number of pixels in the class area of the factor;  

D is the number of total pixels in the study area 
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The complete calculation of weight determination for individual parameters is presented in Table 1. In 

a given pixel, flood susceptibility index (FSI) can be determined by summation of pixel values 

according to Eq. (3):  

 

                                                                           

 

3.4. Shannon’s Entropy Model 

 

The entropy index is a measure of “evenness” extent to which groups are evenly distributed among 

organizational units (Massey and Nancy, 1988). In the present study, an attempt has been made to 

assess flood susceptibility mapping using entropy. More precisely, Theil (1972) defined entropy index 

as a measure of the average difference between a unit’s group proportions and that of the system as a 

whole. There is a one-to-one relationship between the quantity of entropy of a system and the degree 

of disorder called Boltzmann principle and has been used to represent the thermodynamic status of a 

system (Yufeng and Fengxiang, 2009). Shannon improved upon the Boltzmann principle and 

established an entropy model for information theory. The equations implemented to calculate the 

information coefficient (Vj) representing the weight value for the parameter as a whole (Bednarik et al., 

2010) are given as following (Eqs. 4–8): 

 

    
  

   
  

   

             

where, FR is the frequency ratio and Eij is the probability density. 

                          

  

   

         

                                          

    
        

     
                          

 

 Where, Hj and Hjmax are entropy values;  

 Ij is the information coefficient and  

 Mj is the number of classes  

 Vj depicts the resultant weight value for the parameter as a whole  
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Figure 3: Flood conditioning factors of Ponnaiyar river basin; (a) lithology altitude (b) land use (c) distance from 

main river (d) soil depth (e) rainfall (f) slope angle (degree) (g) slope aspect (h) curvature (i) Topographic Wetness 

Index (TWI) and (j) altitude 
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Table 1: Frequency Ratio and Shannon’s Entropy values for the considered flood condition factors 

 

Factors 
No. of pixel in 

domain 

Percent

age of 

domain 

No. 

of 

wel

l 

Percent

age of 

well 

FR Eij Hj Hmax Ij Vj 
Vj 

final 

Lithology 

Gneiss 11933 34.879 23 24.211 0.69 0.061 1.053 1.342 0.215 0.149 2.435 

Charnockite 10057 29.395 29 30.526 1.04 0.092 

     Granitic gneiss 4519 13.208 23 24.211 1.83 0.162 

     Mettagabbro 25 0.073 0 0.000 0.00 0.000 

     Basic rocks 66 0.193 0 0.000 0.00 0.000 

     Amphibolite 377 1.102 2 2.105 1.91 0.169 

     Migmatitic complex 1777 5.194 4 4.211 0.81 0.072 

     Granitic/acidic rocks 663 1.938 2 2.105 1.09 0.096 

     Champion gneiss 12 0.035 0 0.000 0.00 0.000 

     Alkaline rocks 567 1.657 3 3.158 1.91 0.168 

     Ultramafic  165 0.482 0 0.000 0.00 0.000 

     Ultrabasic syenite  10 0.029 0 0.000 0.00 0.000 

     Quartzite 5 0.015 0 0.000 0.00 0.000 

     Anorthosite 153 0.447 0 0.000 0.00 0.000 

     Sand and silt 2278 6.658 6 6.316 0.95 0.084 

     Pondicherry 202 0.590 0 0.000 0.00 0.000 

     Sands  150 0.438 0 0.000 0.00 0.000 

     Alter seq. of sand / 

silt and clay 128 0.374 0 0.000 0.00 0.000 

     Shaly sand stone 1001 2.926 3 3.158 1.08 0.095 

     Lime stone, marl 

and shale 14 0.041 0 0.000 0.00 0.000 

     Sand stone and 

conglomerate 7 0.020 0 0.000 0.00 0.000 

     Clay with limestone 104 0.304 0 0.000 0.00 0.000 

     Land use 

Agricultural land  24296 71.014 81 85.263 1.20 0.189 0.802 0.845 0.050 0.060 0.354 

Built-up land 1153 3.370 0 0.000 0.00 0.000 

     Forest cover 5859 17.125 6 6.316 0.37 0.058 

     River 437 1.277 2 2.105 1.65 0.260 

     Water bodies 1260 3.683 0 0.000 0.00 0.000 

     Barren land 814 2.379 5 5.263 2.21 0.349 

     Grass land 394 1.152 1 1.053 0.91 0.144 

     Soil Depth 

Shallow (25-50cm) 1457 4.259 3 3.158 0.74 0.121 0.788 0.845 0.066 0.049 0.467 

Moderately shallow 

(50-75cm) 10091 29.495 28 29.474 1.00 0.162 

     Moderately deep (75-

100cm) 4831 14.120 18 18.947 1.34 0.218 

     Deep (100-150cm) 7802 22.804 12 12.632 0.55 0.090 

     Very deep (>150cm) 4932 14.416 18 18.947 1.31 0.214 

     Rocky land 4821 14.091 16 16.842 1.20 0.194 

     Miscellaneous land 279 0.815 0 0.000 0.00 0.000 

     Distance from river (m) 

<2000 9219 26.946 33 34.737 1.29 0.250 0.712 0.778 0.084 0.108 0.504 

2000-4000 7253 21.200 15 15.789 0.74 0.144 

     4000-6000 5463 15.968 18 18.947 1.19 0.230 

     6000-8000 4247 12.413 16 16.842 1.36 0.263 

     >8000 8031 23.474 13 13.684 0.58 0.113 

     Rainfall (Rf) 

688-850 3947 11.537 10 10.526 0.91 0.184 0.695 0.778 0.105 0.096 0.634 
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850-923 7505 21.936 20 21.053 0.96 0.193 

     923-987 7937 23.199 22 23.158 1.00 0.201 

     987-1046 6420 18.765 19 20.000 1.07 0.215 

     1046-115 8404 24.564 24 25.263 1.03 0.207 

     Altitude  

(-4-205) 463487 33.577 28 29.474 0.88 0.157 0.747 0.778 0.039 0.034 0.234 

205-386 208941 15.136 13 13.684 0.90 0.162 

     386-556 399278 28.925 25 26.316 0.91 0.163 

     556-750 160107 11.599 14 14.737 1.27 0.227 

     750-1009 133540 9.674 15 15.789 1.63 0.292 

     1009-1635 15038 1.089 0 0.000 0.00 0.000 

     Total Curvature  

(-5.01--0.25) 34153 2.474 2 2.105 0.85 0.182 0.669 0.903 0.259 0.220 2.071 

(-0.25--0.05) 275679 19.971 18 18.947 0.95 0.203 

     (-0.05-0.09) 947734 68.657 66 69.474 1.01 0.217 

     0.09-0.41 102835 7.450 8 8.421 1.13 0.242 

     0.41-4.97 19990 1.448 1 1.053 0.73 0.156 

     Slope angle (Degree)  

<7˚ 1206725 87.419 80 84.211 0.96 0.193 0.698 0.778 0.103 0.099 0.618 

7˚-15˚ 84829 6.145 11 11.579 1.88 0.378 

     15˚-20˚ 35695 2.586 2 2.105 0.81 0.163 

     20˚-25˚ 27425 1.987 1 1.053 0.53 0.106 

     25˚-30˚ 18224 1.320 1 1.053 0.80 0.160 

     >30˚ 7493 0.543 0 0.000 0.00 0.000 

     Topographic wetness index  

(-3.78-5.39) 95719 6.934 17 17.895 2.58 0.369 0.844 0.845 0.0004 0.001 0.003 

5.39-7.37 440145 31.886 31 32.632 1.02 0.146 

     7.37-9.08 576050 41.731 21 22.105 0.53 0.076 

     9.08-11.06 172320 12.483 16 16.842 1.35 0.193 

     11.06-19.25 96157 6.966 10 10.526 1.51 0.216 

     Slope aspect  

Flat (-1) 7252 0.525 1.00 1.05 2.00 0.171 1.07 1.146 0.066 0.133 0.930 

North (0-22.5) 84014 6.086 11.00 11.58 1.90 0.162 

     Northeast (22.5-67.5) 170927 12.383 15.00 15.79 1.28 0.109 

     East (67.5-112.5) 210918 15.280 13.00 13.68 0.90 0.076 

     Southeast (112.5-

157.5) 218733 15.846 12.00 12.63 0.80 0.068 

     South (157.5-202.5) 171230 12.404 13.00 13.68 1.10 0.094 

     Southwest (202.5-

247.5) 146330 10.601 9.00 9.47 0.89 0.076 

     West (247.5-292.5) 145311 10.527 9.00 9.47 0.90 0.077 

     Northwest (292.5-

337.5) 158753 11.501 5.00 5.26 0.46 0.039 

     North (337.5-360) 66923 4.848 7.00 7.37 1.52 0.129 

      

The result ranges between 0 and 1. The closer the value is to the number 1, the greater the imbalance 

is 0. The complete calculation of weight determination for individual parameters is presented in Table 

1. In flood susceptibility mapping, the entropy measures and reflects the spatial association between 

the conditioning factors and flood occurrences. The flood susceptibility index can be determined by 

summation according to Eq. (9). 

 

                                                                    

                                                      

 

 
 



IJARSG– An Open Access Journal (ISSN 2320 – 0243)  

 

International Journal of Advanced Remote Sensing and GIS 1955 

 

3.5. Validation Method 

 

From scientific significance viewpoint, validation is considered to be the most important process of 

modeling (Chung and Fabbri, 2003). Therefore, it is very important to evaluate the resultant FSI. The 

receiver operating characteristics (ROC) curve was applied to determine the accuracy of the FSI. The 

FSI delineated in the current study was verified using the flood locations in the validation datasets. 

Based on the flood inventory data, the accuracy assessment of the flood susceptibility mapping was 

made. In total, 136 flood locations were noted in the study area. Out of these, 95 (70%) floods were 

randomly selected as training data and the remaining 41 (30%) floods were used for the validation 

purposes. The ROC curves were then obtained by considering cumulative percentage of probability 

index maps (on the x axis) and the cumulative percentage of flood occurrence (on the y axis). The 

area under the curve (AUC) was calculated based on ROC curve analysis and it demonstrates the 

accuracy of a prediction system by describing the system’s ability to expect the correct occurrence or 

non-occurrence of pre-defined “events” (Jaafari et al., 2014). Finally, using the quantitative and 

qualitative relationship between the AUC value and prediction accuracy can be grouped as very high, 

high, moderate, low and very low flood occurrences in the study area. The brief methodology used in 

the present study area shown in Figure 4. 

 

 
 

Figure 4: Flowchart showing the methodology adopted in this study 

 

4. Results and Discussion 

 

Frequency Ratio methods were applied to determine the level of relationship between flood locations 

and conditioning factors. In general, the FR value of 1 indicates an average correlation between flood 

locations and effective factors (Pradhan, 2010). If the FR value would be larger than 1, there is a high 

correlation, and a lower correlation equals to the FR value lower than 1 (Lee et al., 2012a). The 

analysis of FR for the relationship between flood location and lithology units indicates that amphibolites 

and Alkaline rocks have the highest FR value (1.91) have the most probability for flooding in the study 

area. The agricultural and barren lands have values of 1.20 and 2.21, respectively, indicating that the 

probability of flood occurrence in these land-use types is very high. For distance from river in the range 

2000–4000 m and >8000 m, there is a low probability of flooding; in contrast, distances in the range 

<2000 m, 4000–6000 m and 6000–8000 m have the highest values (1.29, 1.19, and 1.36, 

respectively). These results demonstrated that the flooding mostly occurs near to the river bank and 
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rarely far from the rivers. The results of soil depth displayed that moderately deep, very deep and 

rocky land have the highest value of FR (1.34, 1.31 and 1.20 respectively).  

 

The slope angle indicates that class 7°–15° has the highest FR value (1.88), and other indicating a low 

probability. This means that flood occurrence probability decreases with increasing in slope angle. In 

the case of slope aspect, flood event is most abundant on flat (FR = 2.00) and northwest-facing slopes 

(FR = 0.46), have the lowest abundance. Based on the curvature, the (0.09-0.41) shape has the 

highest FR value (1.13) indicates that the most probability for flooding. That shape retains surface run-

off for a longer period especially during heavy rainfall. Therefore, it is more prone for flooding 

compared to the other shapes. Flood locations are more concentrated in areas with a TWI (-3.78-5.39) 

(FR = 2.58) and altitude classes of 750-1009 m (FR = 1.63). In the case of altitude, analysis of FR 

values demonstrated that the flood occurrence cannot occur in the high elevation regions of the study 

area. Finally, based on Equation (2), the final flood susceptibility map obtained by the FR model is 

shown in Figure 5. 

 

 
 

Figure 5: Flood susceptibility map of FR model in Ponnaiyar River basin 

 

In the present study, all parameters of SE model were calculated for each conditioning factor, which is 

shown in Table 1. Based on the results obtained from the entropy, the lithology and curvature 

represented highest flood susceptibility in the study area (Vj final, 2.435, 2.071 respectively) showing 

maximum flood susceptibility. The land-use weights of factors were 0.802, 0.845, 0.050, and 0.060, 

respectively. The entropy values of distance from the river indicated positive influence in flooding. The 

analysis of SE for the relationship between flood occurrence and slope angle indicated that positive 

influences in flooding. In the case of slope aspect and plan curvature, flat area had a strong positive 

correlation with flood occurrence. Eij values increases by increasing classes of TWI. Moore et al. 

(1991) stated that TWI represents the effect of topography on the location and size of saturated source 

areas of surface run-off generation under the assumption of steady-state conditions and uniform soil 

properties. In the case of altitude, the highest weight (0.292) was for the range of 750–1009 m that has 

positive effect in flood occurrence. Finally, based on Equation (9), the final flood susceptibility map 

created by the SE model is shown in Figure 6. 

 

 

 

 



IJARSG– An Open Access Journal (ISSN 2320 – 0243)  

 

International Journal of Advanced Remote Sensing and GIS 1957 

 

 
 

Figure 6: Flood susceptibility map of SE model in Ponnaiyar River basin 

 

In flood susceptibility appraisal, the major aim was to find areas that may be affected by future floods. 

Thus, no matter which integration methodology is used, it is very important to validate the resultant 

flood susceptibility maps with respect to unknown future flood events (Chung & Fabbri, 2003). In this 

study, the flood locations that were not used during the model building/training were used to verify the 

flood susceptibility maps. The receiver operating characteristics (ROC) analysis was used (Egan, 

1975; Swets, 1988; Pradhan & Lee, 2010; Pradhan et al., 2011; Pourghasemi et al., 2012a; Rahmati 

et al., 2014) to determine the accuracy of flood susceptibility maps produced using FR models. The 

ROC curve is a common methodology to determine the accuracy of a diagnostic test (Pourghasemi et 

al., 2012a), and it is considered as a graphical representation of the trade-off between the false-

negative (X-axis) and false-positive (Y-axis) rates for every possible cut-off value (Pourghasemi et al., 

2014). The AUC of ROC describes the accuracy of a prediction model by determining the system’s 

ability to expect the correct occurrence or non-occurrence of pre-defined ‘events’ (Pourtaghi & 

Pourghasemi, 2015). The ROC curves for FR and SE models are shown in Figure 7 a & b 

respectively.  

 

 
 

Figure 7: ROC curve for the flood susceptibility maps produced by FR and SE models of Ponnaiyar river basin 
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It is clear that in the flood susceptibility mapping using the FR model, the AUC is about 0.8020, which 

corresponds to the prediction accuracy of 80.20%, whereas in the flood susceptibility map using the 

SE model, the AUC is about 0.7930 and the prediction accuracy is 79.30%. Therefore, based on the 

calculated AUC, the FR and SE models indicated almost similar and reasonable results and can be 

used as simple tools in flood susceptibility mapping and flood mitigation when a sufficient number of 

data is obtained. 

 

5. Conclusion 

 

Industrial and agricultural expansion has been accompanied in recent decades by an ever increasing 

use of areas subject to flood, which has resulted in increased flood damages. Apart from studies 

related to investigations and improvements of river system, simultaneous action for studies of 

watersheds and adoption of measures aimded at runoff and water flow retardation is also required. 

Therefore, flood susceptibility mapping is necessary for integrated watershed management in order to 

have sustainable development. The validation of results indicated that the FR and SE models had 

almost similar and reasonable results in the study area. In the present study, flood susceptibility maps 

have been prepared using FR and SE methods with the integration of remote sensing and GIS. The 

application of the FR and SE models is divided into three steps: the construction of database, the 

calculation of weights and the data integration and verification procedure, in which the obtained FSI 

was verified with ROC and flood locations. In general, all used factors have relatively higher values of 

variation index implying the importance of all factors for accurate demarcation of flood prone areas. FR 

approach is in agreement with the result obtained by other researchers used in flood susceptibility 

appraisal and various environmental studies. FR model is effective and reliable approach for flood 

susceptibility mapping in the present study. According to Shannon’s entropy results, it can be 

concluded that lithology and curvature have the strongest relationships with flood occurrence. Also, 

factors such as slope angle (degree) distance to from Main River, and slope aspect had the lowest 

importance on flood susceptibility map. From the analysis, it is seen that the FR model (AUC=80.20 %) 

performs better than SE (AUC=79.30 %) models. As a final conclusion, the results of the present study 

proved that FR and SE models can be successfully used in flood susceptibility mapping. So, the result 

of flood susceptibility map indicated that the Ponnaiyar river basin has undergone a significant amount 

of the flood occurrences are made in future. Based on the overall assessments, the proposed 

approaches in this study were concluded as objective and applicable. The scientific information 

derived from this study can assist governments, planners and engineers to perform proper actions in 

order to prevent and mitigate the flood occurrence in the future. 

 

Acknowledgements 

 

The first author acknowledges University Grants Commission (UGC), New Delhi, for granting a Post-

Doctoral Fellowship. The authors thank the anonymous reviewers for their valuable comments and 

suggestions to improve the content of the article. 

 

References 

 

Aniya, M. Landslide-susceptibility mapping in the amahata river basin, Japan. Ann Assoc Am Geogr. 

1985. 75 (1) 102-114. 

 

Anbazhagan, S., and Dash, P. Environmental case study of Cauvery river flood plain. GIS 

Development. 2003. 7 (12) 30-35. 

 

Ayazi, M.H., Pirasteh, S., Arvin, A.K.P., Pradhan, B., Nikouravan, B., and Mansor, S. Disasters and 

risk reduction in groundwater: Zagros mountain southwest Iran using geo-informatics techniques. Dis 

Adv. 2010. 3 (1) 51-57.  

 



IJARSG– An Open Access Journal (ISSN 2320 – 0243)  

 

International Journal of Advanced Remote Sensing and GIS 1959 

 

Bajabaa, S., Masoud, M., and Al-Amri, N. Flash flood hazard mapping based on quantitative 

hydrology, geomorphology and GIS techniques (case study of Wadi Al Lith, Saudi Arabia). Arab. J. 

Geosci. 2013. 1-13.  

 

Bednarik, M., Magulová, B., Matys, M., and Marschalko, M. Landslide susceptibility assessment of the 

Kraǐovany–Liptovský Mikuláš railway case study. Phys Chem Earth. 2010. 35; 162-171. 

 

Charon, J.E., 1974: Hydrogeological applications of ERTS satellite imagery. In: Proc UN/FAO regional 

seminar on remote sensing of earth resources and environment. Commonwealth Science Council, 

Cairo. 439-456. 

 

Chung, J.F., and Fabbri, A.G. Validation of spatial prediction models for landslide hazard mapping. Nat 

Hazards. 2003. 30 (3) 451-472.  

 

Co, R.M., 1990: Handbook of groundwater development. New York: Wiley. 34-51. 

 

Central Ground Water Board (CGWB), (2012). Annual Report. 

 

Devkota, K.C., Regmi, A.D., Pourghasemi, H.R., Yoshida, K., Pradhan, B., Ryu, I.C., Dhital, M.R., and 

Althuwaynee, O.F. Landslide susceptibility mapping using certainty factor, index of entropy and logistic 

regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal 

Himalaya. Nat Hazards. 2013. 65; 135-165. 

 

Egan, J.P., 1975: Signal detection theory and ROC analysis. New York: Academic Press. 

 

Ercanoglu, M., and Gokceoglu, C. Assessment of landslide susceptibility for a landslide prone area 

(north of Yenice, NW Turkey) by fuzzy approach. Environ Geol. 2002. 41; 720-730. 

 

Esteves, L.S. Consequences to flood management of using different probability distributions to 

estimate extreme rainfall. J Environ Manage. 2013. 115; 98-105. 

 

Feng, C.C., and Wang, Y.C. GIScience research challenges for emergency management in southeast 

Asia. Nat Hazards. 2011. 59; 597-616. 

 

Florinsky, I.V. Relationships between topographically expressed zones of flow accumulation and sites 

of fault intersection: analysis by means of digital terrain modelling. Environ Model Softw. 2000. 15 (1) 

87-100.  

 

Glenn C.R. et al., 2012: Lahaina Groundwater Tracer Study—Lahaina, Maui, Hawaii. Final Interim 

Report prepared from the State of Hawaii DOH, the U.S. EPA, and the U.S. Army Engineer Research 

and Development Center.  

 

Geological Survey of India (GSI) (1988). Annual report. 

 

Gokceoglu, C., and Aksoy, H. Landslide susceptibility mapping of the slopes in the residual soils of the 

Mengen region (Turkey) by deterministic stability analyses and image processing techniques. Eng 

Geol. 1966. 44; 147-161. 

 

Jaafari, A., Najafi, A., Pourghasemi, H.R., Rezaeian, J., and Sattarian, A. GIS-based frequency ratio 

and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern 

Iran. Int J Environ Sci Te. 2014. 11 (4) 909-926.  

 

 



IJARSG– An Open Access Journal (ISSN 2320 – 0243)  

 

International Journal of Advanced Remote Sensing and GIS 1960 

 

Joint Needs Assessment (JNA) Report of Tamilnadu Floods-2015. 

 

Jourde, H., Lafare, A., Mazzilli, N., Belaud, G., Neppel, L., Dörfliger, N., and Cernesson, F. Flash flood 

mitigation as a positive consequence of anthropogenic forcing on the groundwater resource in a karst 

catchment. Environ Earth Sci. 2014. 71; 573-583.  

 

Kia, M.B., Pirasteh, S., Pradhan, B., Mahmud, A.R., Sulaiman, W.N.A., and Moradi, A. An artificial 

neural network model for flood simulation using GIS: Johor river basin, Malaysia. Environ Earth Sci. 

2012. 67; 251-264. 

 

Kjeldsen, T.R. Modelling the impact of urbanization on flood frequency relationships in the UK. Hydrol. 

Res. 2010. 41; 391-405.  

 

Lee, S., Kim, Y.S., and Oh, H.J. Application of a weights-of-evidence method and GIS to regional 

groundwater productivity potential mapping. Environ Manag. 2012a. 96 (1) 91-105.  

 

Liu, Y.B., Gebremeskel, S., De Smedt F. et al. A diffusive transport approach for flow routing in GIS-

based flood modeling. J Hydrol. 2003. 283; 91-106. 

 

Masood, M., and Takeuchi, K., Assessment of flood hazard, vulnerability and risk of mid-eastern 

Dhaka using DEM and 1D hydrodynamic model. Nat Hazards. 2012. 61; 757-770. 

 

Massey, D.S., and Nancy, A.D. The Dimensions of Residential. Social Forces. 1988. 67 (2) 281-315. 

 

Mogaji, K.A., Lim, H.S., and Abdullah, K. Regional prediction of groundwater potential mapping in a 

multifaceted geology terrain using GIS-based Dempster–Shafer model. Arab J Geosci. 2015. 8 (5) 

3235-3258. 

 

Moore, I.D., Grayson, R.B., and Ladson, A.R. Digital terrain modeling: a review of hydrological, 

geomorphological and biological applications. Hydrol Process. 1991. 5; 3-30. 

 

Pourghasemi, H.R., and Beheshtirad, M. Assessment of a data-driven evidential belief function model 

and GIS for groundwater potential mapping in the Koohrang Watershed, Iran. Geocarto Int. 2014. 30 

(6) 662-685.  

 

Pourghasemi, H.R., Mohammady, M., and Pradhan, B. Landslide susceptibility mapping using index of 

entropy and conditional probability models in GIS: Safarood Basin, Iran. Catena. 2012a. 97; 71-84. 

 

Pradhan, B., and Lee, S. Regional landslide susceptibility analysis using back-propagation neural 

network model at Cameron Highland, Malaysia. Landslides. 2010. 7 (1) 13-30.  

 

Pradhan, B. Flood Susceptible Mapping and Risk Area Estimation Using Logistic Regression, GIS and 

Remote Sensing. J Spatial Hydrol. 2012a. 9 (2) 1-18.  

 

Pradhan, B. Remote sensing and GIS-based landslide hazard analysis and cross-validation using 

multivariate logistic regression model on three test areas in Malaysia. Adv Space Res. 2010b. 45 (10) 

1244-1256. 

 

Pradhan, B., and Buchroithner, M.F. Comparison and validation of landslide susceptibility maps using 

an artificial neural network model for three test areas in Malaysia. Environ. Eng. Geosci. 2010. 16; 

107-126. 

 



IJARSG– An Open Access Journal (ISSN 2320 – 0243)  

 

International Journal of Advanced Remote Sensing and GIS 1961 

 

Pradhan, B., Youssef, A.M., and Varathrajoo, R. Approaches for delineating landslide hazard areas 

using different training sites in an advanced artificial neural network model. Geospatial. Inf. Sci. 2010b. 

13; 93-102. 

 

Pradhan, B., Mansor, S., Pirasteh, S., and Buchroithner, M.F. Landslide hazard and risk analyses at a 

landslide prone catchment area using statistical based geospatial model. Int. J. Remote. Sens. 2011. 

32; 4075-4087. 

 

Pradhan, B. Use of GIS-based fuzzy logic relations and its cross application to produce landslide 

susceptibility maps in three test areas in Malaysia. Environ. Earth Sci. 2011. 63; 329-349. 

 

Pourtaghi, Z.S., and Pourghasemi, H.R. GIS-based groundwater spring potential assessment and 

mapping in the Birjand Township, southern Khorasan Province, Iran. Hydrogeol J. 2015.  22; 643-662. 

 

Rahmati, O., Pourghasemi H.R. and Zeinivand, H. Flood susceptibility mapping using frequency ratio 

and weights-of-evidence models in the Golastan Province, Iran. Geocarto International, 2015. 31 (1) 

42-70.  

 

Rahmati, O., Nazari Samani, A., Mahdavi, M., Pourghasemi, H.R., and Zeiniv, H. Groundwater 

potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arab J Geosci. 

2014a. 8; 1-13.  

 

Regmi, A.D., Devkota, K.C., Yoshida, K., Pradhan, B., Pourghasemi, H.R., Kumamoto, T., and Akgun, 

A. Application of frequency ratio, statistical index, and weights-of-evidence models and their 

comparison in landslide susceptibility mapping in central Nepal Himalaya. Arab J Geosci. 2013.  

 

Saha, A.K., Gupta, R.P., Sarkar, I., Arora, K.M., and Csaplovics, E. An approach for GIS-based 

statistical landslide susceptibility zonation with a case study in the Himalayas. Landslides. 2005. 2; 61-

69. 

 

Schober, B., Hauer, C., and Habersack, H. A novel assessment of the role of Danube floodplains in 

flood hazard reduction (FEM method). Nat Hazards. 2015. 75; 33-50. 

 

Shafapour Tehrany, M., Pradhan, B., and Jebur, M.N. Spatial prediction of flood susceptible areas 

using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models 

in GIS. J Hydrol. 2013. 504; 69-79. 

 

Smith, K., and Ward, R., 1998: Floods: Physical Processes and Human Impacts. Chichester: Wiley. 

382. 

 

Swets, J.A. Measuring the accuracy of diagnostic systems. Science. 1988. 240; 1285-1293. 

 

Tehrany, M.S., Pradhan, B., Jebur, M.N. Spatial prediction of flood susceptible areas using rule based 

decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. J Hydrol. 

2013. 504; 69-79. 

 

Tehrany, M.S., Pradhan, B., Jebur, M.N. Flood susceptibility mapping using a novel ensemble 

weights-of-evidence and support vector machine models in GIS. J Hydrol. 2014. 512; 332-343. 

 

Theil, H., 1972: Statistical decomposition analysis. Amsterdam: North-Holland Publishing Company.  

 

 



IJARSG– An Open Access Journal (ISSN 2320 – 0243)  

 

International Journal of Advanced Remote Sensing and GIS 1962 

 

Vieux, B.E., 2004: Distributed hydrologic modeling using GIS. Water Sci Tech Libr. Vol. 48. Kluwer 

Academic Publishers. 312. 

 

Wang, H.B., Wu, S.R., Shi, J.S., and Li, B. Qualitative hazard and risk assessment of landslides: a 

practical framework for a case study in China. Nat Hazards. 2013. 69; 1281-1294. 

 

Yalcin, A. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate 

statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena. 2008. 72. 1-12. 

 

Yufeng, S., and Fengxiang, J. Landslide stability analysis based on generalized information entropy. 

Int Conf Environ Sci Inf Appl Technol. 2009. 2; 83-85.  

 


