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Abstract Remote sensing satellite imagery is the tool to obtain synoptic, multi-temporal, dynamic and 

timely efficient information about any target on Earth. The main objective of the current study is to use 

remote sensing satellite data and field spectral reflectance measurements to identify the spectral 

pattern of the different cultivars of olives and to statistically correlate this spectral reflectance pattern 

with crop productivity. The study was carried out in El-Beheira governorate (Wadi El Natrun) city 

during the whole year of 2014. The three observed varieties were Picual, Manzanillo and Kalamata. 

Measurements were carried out for five growth stages: dormancy stage, flowering stage, fruit sat 

stage, mature stage and ripening stage. The spectral reflectance pattern for each cultivar through the 

different growth stages was identified. Then, seven vegetation indices (normalized difference 

vegetation index (NDVI), modified chlorophyll absorption ration index (MCARI), triangular vegetation 

index (TVI), modified chlorophyll absorption ration index-1 (MCARI-1), modified chlorophyll absorption 

ration index-2 (MCARI-2), modified triangular vegetation index-2 (MTVI2) and chlorophyll index (CI)) 

were calculated through the five growth stages for each cultivar and then were observed as estimators 

for crop yield modeling. Analysis of the result based on the comparison of the correlation coefficient 

(r
2
) for all generated models, the target is to identify the optimal vegetation index and the optimal

growth stage to predict yield for each variety. Generally, Manzanillo variety showed the highest 

reflectance followed by Picual and Kalamata. The result showed that the highest (r
2
) was with the two

cultivars Picual and Kalamata during mature stage, while the highest (r
2
) was with cultivar Manzanillo

during fruit sat stage. While the lowest (r
2
) was found during dormancy stage for the three cultivars.

Keywords Olive Tree; Spectroradiometer; Spectral Characteristics 

Open Access Research Article 

http://technical.cloud-journals.com/index.php/IJARSG/article/view/Tech-564


IJARSG– An Open Access Journal (ISSN 2320 – 0243)  

 

International Journal of Advanced Remote Sensing and GIS 1581 

 

1. Introduction 

 

Olive (Oleaeuropaea L.) is one of the most important crops in Egypt. In 2014, Olive in Egypt occupies 

82047.63 hectare with a total product of 563070 tons as of 2014. The top olive producers’ areas in 

Egypt are the west coast, the province of Faiyum, Siwa Oasis, northern Sinai and Wadi El Natrun. 

Because of the importance of Olive cultivation for national economy, there is a high need to facilitate 

using remote sensing techniques in monitoring and predicting the yield of olive through remotely 

sensed statistical empirical models.  

 

Remote sensing is the science to detect, measure, record and analyze energy in a selected portion of 

the electromagnetic spectrum. Remote sensing techniques, in particular, multispectral visible and 

Infra-Red (IR) reflectance and emission can provide an instantaneous, non-destructive, and 

quantitative assessment of crops ability to intercept radiation and photosynthesize [1].  

 

There have been a lot of efforts worldwide to employ remote sensing techniques in crop monitoring 

and crop yield prediction. Most of these works showed that remote sensing technology was 

encouraging and promising crop yield as a key element for rural development. Statistical model 

process is based on Vegetation Indices (VI) such as (Normalized Difference Vegetation Index (NDVI), 

modified chlorophyll absorption ration index (MCARI), triangular vegetation index (TVI), modified 

chlorophyll absorption ration index-1 (MCARI-1), modified chlorophyll absorption ration index-2 

(MCARI-2), modified triangular vegetation index-2 (MTVI2) Chlorophyll Index (CI)). These could be 

calculated from remote sensing satellite data as well as remotely sensed ground observation tools.  

 

Gong et al. [2; 5] concluded that remote sensing statistical models are chiefly based on using various 

regressions that compute the crop yield empirically. The explicit and clear description of the 

mechanism or the effect of each input on crop yield is one of the significant factors of this group of 

models. Spectral characteristics in the form of vegetation indices could be used with this group of 

models. Simply, vegetation indices are algebraic combinations of remotely sensed spectral bands that 

can tell something useful about vegetation. These vegetation indices have proved to be very useful 

factors for explaining variability of the crop yield, which can be available for use in yield forecasting 

models. Lately, hyper spectral remote sensing techniques enlarged significantly the applications of 

remote sensing techniques. Govender et al. [6] Hyperspectral remote sensing imagers acquire many, 

very narrow, contiguous spectral bands throughout the visible, near-infrared, mid-infrared, and thermal 

infrared portions of the electromagnetic spectrum. Hyperspectral sensors typically collect 200 or more 

bands enabling the construction of an almost continuous reflectance spectrum for every pixel in the 

scene. Contiguous, narrow bandwidths characteristic of hyperspectral data allow for in-depth 

examination of earth surface features which would otherwise be ‘lost’ within the relatively coarse 

bandwidths acquired with multispectral scanners. Maselli et al. [7] extracted olive tree Normalized 

difference vegetation index (NDVI) values from MODIS imagery and used a modified parametric model 

(C-fix) and a bio-geochemical model (BIOME-BGC) to enable the prediction of daily olive tree gross 

primary production and olive tree net primary production (NPP). Guzmán et al. [8] used infrared 

machine vision system to detect olive fruit quality. Brilli et al. [9] estimated olive (Oleaeuropaea L.) 

gross primary production (GPP) combining ground measurements and multi-sensor satellite data.  

 

Ariana & Lu, [10] used Hyper spectral imaging to detect the defect internal option for pickling, however, 

the technique still cannot meet the online speed requirement because of the need to acquire and 

analyze a large amount of image data. Hyper spectral reflectance characteristics was used to 

discriminate different geographical origins of Jatropha curcas L. seeds to estimate chlorophyll content 

and to detect macronutrients content in oil seeds. Garcia-Maraver et al. [11] used hyperspectral 

technique to analyze the relation between the cellulose, hemi cellulose and lignin content and the 

thermal behavior of residual biomass from olive trees. 
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The main objectives of the current research are to study the spectral properties of the three cultivars of 

olive leaf during the whole season 2014 and determine the best spectral bands to separate the olive 

plantations as well as study aims to link crop productivity by spectral reflectance, research is a first 

step towards limiting the cultivation of olives at the State level. The objective of this study is Field 

spectral measurements and identifies the spectral signature of the different cultivars of olives, linking 

productivity of the olive crop with different spectral characteristics. 

 

2. Materials and Methods 

 

The study was carried out in olive farm located in Wadi El Natrun area, El-Beheira governorate 

between longitudes 30°14'37.43" and 30°14'58.07"E and latitudes 30°19'54.69" and 30°19'43.57"N. 

The Farm covers about 12.6 hectare where shown in Figure 1. The soil of the farm is Sandy clay and 

ratio of Calcium carbonate is 10%. 

 

 

 

Figure 1: Field Experiment Location 

 

Land surface temperature in the study area ranged from 5 to 15 Celsius degree in January and 

increased gradually to range from 28 to 38 Celsius degree in August as shown in Figure 2.  
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Figure 2: Mean Maximum & Minimum Land surface Temperature of Study Area 

 

Analytical field spectroradiometer (ASD Field Spec) was used to measure the reflection of the different 

olive trees under investigation. Data were collected on cloudless days from 10 am clock to 2 pm in 

order to minimize the atmospheric effects. Measurements were carried out in a full optical spectral 

range (Visible – Near Infrared – Short Wave Infrared) starting from 350 nm to 2500 nanometer (nm). 

The sampling interval is 1.4 nm at the spectral range (350-1050 nm) while it is 2 nm at the spectral 

range (1000-2500 nm). These are the intervals which the device is capturing the reflectance. The 

device automatically performs an interpolation for the data and gives the final data output with (1 nm) 

interval for the all spectrum range (350-2500 nm). The spectrum characteristics of the device are 

shown in Table 1. The protocol used for the collection of spectral data is based on measuring radiance 

from a Spectralon® panel. A designed probe was attached to the instrument’s fiber-optic cable to be 

used to ensure standardized environmental conditions for reflectance measurement. The fiber-optic 

cable provides the flexibility to adapt the instrument to a wide range of applications. Bare fore optic 25 

degrees used for outdoor measurements resulting circular field of view with 3 cm diameter as 

measurements were taken at 5 cm height in nadir position (90 degrees) over the measured plants. In 

the current study, the measurements were performed by holding the pistol grip by hand. As 

recommended in the instructions of using the device, the Spectralon® was tilted directly towards the 

sun during optimization. 

 

Table 1: The ASD Field Spec 3 Specifications 

 

Spectral Range 350 - 2500 nm 

Spectral Resolution 3 nm at 700 nm and 8.5 
nm @ 1400 nm and 6.5 

nm @ 2100 nm. 

Sampling Interval 1.377 nm for 350 - 1000 
nm and 2 nm for 1000 - 

2500 nm 

 

The farm was divided into five spots, each spot contains twelve olive trees belong to the three 

observed cultivars. Each growing stage was covered by sixty (60) hyper spectral measurements with a 

total of three hundred (300) measurements overall the whole year of 2014. Table 2 shows the 

scheduled time for the field measurements while Figure 3 shows the location of measurements within 

the location.  
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Table 2: Scheduled Time for Field Measurements 

 

Stage Time 

Dormancy Stage 20/1/2014 

Flowering Stage 10/3/2014 

Fruit Sat Stage 28/4/2014 

Mature Stage 9/6/2014 

Ripening Stage 13/8/2014 

 

 
 

Figure 3: Location of the Measurements 

 

As the first step of the analysis, spectral reflectance pattern for each cultivar in each growing stage 

was identified and compared. Seven vegetation indices were calculated to be tested as estimators for 

crop yield. Finally, accuracy assessment was carried out to identify the optimal vegetation index and 

the optimal growing stage to predict crop yield for each cultivar. Equations that were used to calculate 

the different indices and the references for each index are explained in Table 3.  

 

Table 3: The Used Vegetation Indices (VIs) 

 

VIS Equation Reference 

NDVI 

 

Rouse et al. [12] 

MCARI 

 

Daughtry et al. [13] 

TVI 0.5[120(R750-R550)-200(R670-R550)] Broge & Leblanc [14] 

MCARI1 1.2[2.5(R800-R670)-1.3(R800-R550)] Haboudane et al. [15] 

MCARI2 

 

Haboudane et al. [15] 
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MTVI2 

 

Haboudane et al. [15] 

Chlorophyll index 

 

Gitelson et al. [16] 

 

For modeling process, descriptive statistics were applied to characterize the parameters of 

continuous environmental variables such as mean, median, standard deviation, minimum and 

maximum. Were imported to the Statistical Package of the Social Sciences (SPSS) version 18 

statistical software for descriptive statistical analysis? We made relationships between the dependent 

(yield) (Kg) and independent (vegetation indices biophysical parameters) variables involved in the 

simple regression analysis. 

 

The stepwise simple linear regression method was used to model Normalized difference vegetation 

index (NDVI), Modified chlorophyll absorption ratio index (MCARI), Triangular vegetation index (TVI), 

Modified chlorophyll absorption ratio index 1 (MCARI1), Modified chlorophyll absorption ratio index 2 

(MCARI2), Modified triangular vegetation index (MTVI2), Chlorophyll index and grain yield predictions. 

To avoid the danger of too many parameters being included, the stepwise Forward method was used. 

The production function: or Grain Yield = f (vegetation indices biophysical parameters). 

 

Y=a+ b*x       (Linear regression model) 

 

Where, Y is the actual grain yield and X are VIS. A is intercept, b is the regression coefficients. The 

final regression equation was derived through a researcher controlled trial, error approach and the 

impact of grain yield constraints on grain yield. Two main assumptions were used to check the 

relationships between the dependent (grain yield) and independent (vegetation indices biophysical 

parameters) variables involved in the simple regression analysis.  

 

Regression analysis also has an assumption of linearity. The relationship between the dependent 

variable and the independent variables for a linear relationship was tested and was the basis of the 

correlation of the variables [17]. The relationship between predict and the predictors is linear. The 

simple linear regression models were applied to linear relationships. The linearity between grain yield 

and vegetation indices biophysical parameters was done using SPSS 18.  

 

The square of the correlation coefficient (R²) was computed to measure the goodness-of-fit of the 

model. It takes values between 0 (the points are completely random) and 1 (all the points lie exactly on 

the regression line). (R²) describes the proportion of the total variability of grain yield (Y) which is 

explained by the linear relationship of Y on the entire vegetation indices biophysical parameters , and 

gives an indication of the goodness-of-fit of a model .However, every time another independent 

variable is added, the value (R²) of is necessarily increased. 

 

Three spectral regions of Spectroradiometer data (Visible, near infra-red and Shortwave infra-red) and 

seven spectral vegetation indices (NDVI, MCARI, TVI, MCARI1, MCARI2, MTVI2 and Chlorophyll 

Index) were used in the modeling process with crop yield. All generated models were validated using 

the correlation coefficient between the actual and predicted yields (r²). 
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3. Results and Discussion  

 

3.1. Analysis of Spectral Reflectance Characteristics  

 

Spectral reflectance of plant leaves is characterized and uniquely identified by very low spectral 

reflectance in the red band followed by high spectral reflectance in near infra-red band and low 

spectral reflectance in the shortwave infra-red. Near infra-red band usually shows the highest 

reflectance value while visible bands show the lowest ones. The spectral zones for the three cvs 

showed that the highest spectral reflectance was in near infra-red infrared spectral zone (700–1300 

nm), relatively low reflectance in the spectral zone (1450–1800 nm) whiles the lower reflectance was 

found in the spectral zone (1950-2300 nm). The lowest reflectance was found in the spectral zone 

(350-650). 

 

Analysis of the spectral reflectance characteristics for each growing stage showed that in the 

dormancy stage, in visible bands Kalamata cultivar showed the highest spectral reflectance followed 

by Picual when Manzanillo cultivar showed the lowest spectral reflectance. In near infra-red bands, 

Kalamata cultivar showed the highest reflectance while Manzanillo cultivar was the lowest. Kalamata 

cultivar showed also the highest reflectance in short wave infrared (AWIR-1 and SWIR-2) while 

Manzanillo cultivar showed the lowest reflectance. Spectral reflectance pattern for the three cultivars in 

the dormancy stage is shown in Figure 4.  

 

 
 

Figure 4: Spectral Reflectance in All Cultivar in Dormancy Stage 

 

In flowering stage, Kalamata cultivar showed the highest spectral reflectance in all bands. In near 

infra-red band, Picual showed the lowest reflectance, however, no significant difference was found in 

the reflectance of Picual and Manzanillo in visible bands as shown in Figure 5. 
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Figure 5: Spectral Reflectance in All Cultivar in Flowering Stage 

 

In fruit sat stage, Manzanillo cultivar showed is highest spectral reflectance with while Kalamata 

cultivar showed the lowest reflectance as shown in Figure 6.  

 

 
 

Figure 6: Spectral Reflectance in All Cultivar in Fruit Sat Stage 

 

In mature stage, Manzanillo cultivar showed the highest spectral reflectance in all bands followed by 

Picual cultivar in near infrared and shortwave infrared. No significant difference in the reflectance of 

the three cultivars in visible spectral region as shown in Figure 7.  
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Figure 7: Spectral Reflectance in All Cultivar in Mature Stage 

 

In ripening stage, Kalamata cultivar showed the highest reflectance in visible region while Manzanillo 

showed the lowest reflectance. Manzanillo showed the highest reflectance in near infra-red spectral 

region while Picual showed the lowest reflectance. In (SWIR-1 and SWIR-2), Kalamata cultivar 

showed the highest spectral followed by the other two cultivars that gave almost the same reflectance 

as shown in Figure 8.  

 

 
 

Figure 8: Spectral Reflectance in All Cultivar in Mature Stage 

 

3.2. Yield Prediction Modeling  

 

Modeling process in the current study is focusing on statistical empirical models that are limited to the 

conditions of the experiment. Data for the whole season of 2014 were used in the current study. Three 

hundred (300) spectral measurements (one hundred for each cultivar) were considered in the 

modeling process. Vegetation indices (VIs) and yield data were the main inputs in the modeling 

process. As the first step, each individual factor was used in a simple regression analysis to estimate 

Olive yield.  

 

Total of Fifteen models were produced, yield prediction for each cultivar was estimated using the data 

from the five growing stages. It was found that the highest correlation coefficient for the two cultivars 
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Kalamata and Picual was presented in mature stage (Tables 4 and 5) while the highest correlation 

coefficient for Manzanillo cultivar was found during fruit sat stage (Table 6). The lowest correlation 

coefficient for all cultivars was found in dormancy stage. Table 7 showed the highly accurate model for 

each cultivar.  

 

Table 4: Simple Regression Models for Picual Yield Prediction in Mature Stage 

 

Table 5: Simple Regression Models for Kalamata Yield Prediction in Mature Stage 

 

Input factor Intercept(a) Slope 

coefficient (b) 

Generated model Correlation 

coefficient (R²) 

NDVI -98.902 239.018 Y=-98.902+239.018*NDVI 0.862 

MCARI 13.771 985.786 Y=13.771+985.786*MCARI 0.941 

TVI -10.977 4.928 Y=-10.977+4.928*TVI 0.752 

MCARI1 -12.268 180.619 Y=-12.268+180.619*MCARI1 0.748 

MCARI2 -10.232 45.840 Y=-10.232+45.840*MCARI2 0.787 

MTVI2 10.881 55.394 Y=10.881+55.394*MTVI2 0.777 

Chlorophyll index 39.973 68.333 Y=39.973+68.333*Chlorophyll Index 0.824 

 

Table 6: Simple Regression Models for Manzanillo Yield Prediction in Fruit Sat Stage 

 

Input Factor Intercept(A) Slope 

Coefficient (b) 

Generated Model Correlation 

Coefficient (R²) 

NDVI 260.482 449.042 Y=-260.482+449.042*NDVI 0.969 

MCARI -40.140 1975.960 Y=-40.140+1975.960*MCARI 0.894 

TVI -242.221 15.755 Y=-242.221+15.755*TVI 0.877 

MCARI1 -271.964 622.285 Y=-271.964+622.285*MCARI1 0.779 

MCARI2 -291.462 168.073 Y=-291.462+168.073*MCARI2 0.744 

MTVI2 -183.170 182.507 Y=-183.170+182.507*MTVI2 0.777 

Chlorophyll index -24.488 177.067 Y=-24.488+177.067*Chlorophyll Index 0.903 

 

Table 7: Showed the Highest R² to Every Cultivar 

 

Cultivar Intercept(A) Slope Coefficient (B) Generated Model Correlation Coefficient (R²) 

Picual 7.065 975.649 Y=7.065+975.649*MCARI 0.981 

Manzanillo -260.482 449.042 Y=-260.482+449.042*NDVI 0.969 

Kalamata 13.771 985.786 Y=13.771+985.786*MCARI 0.941 

 

According to the presented results, mature and fruit sat are the optimal growing stages for olive 

monitoring and yield prediction. At the same time, dormancy stage did not show sufficiency in either 

monitoring crop or predicting the yield. Most of vegetation indices showed high efficiency as estimators 

for crop yield, however, (MACARI - yield) and (NDVI - yield) models were the highly accurate models 

for yield prediction. These results agreed with Noureldin et al. [18] and Aboelghar et al. [19].  

 

Input factor Intercept(a) Slope 

Coefficient (b) 

Generated Model Correlation 

Coefficient (R²) 

NDVI -274.008 473.422 Y=-274.008+473.422*NDVI 0.851 

MCARI 7.065 975.649 Y=7.065+975.649*MCARI 0.981 

TVI -45.614 5.810 Y=-45.614+5.810*TVI 0.779 

MCARI1 -51.494 223.087 Y=-51.494+223.087*MCARI1 0.779 

MCARI2 -51.364 57.304 Y=-51.364+57.304*MCARI2 0.774 

MTVI2 -23.839 68.901 Y=-23.839+68.901*MTVI2 0.769 

Chlorophyll index 27.078 81.214 Y=27.078+81.214*Chlorophyll Index 0.827 
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4. Conclusions  

 

The main objective of the current study is to use hyperspectral remotely sensed data to identify the 

spectral signature of the different olive cultivars and to link productivity of the olive crop with different 

hyperspectral vegetation indices that were calculated from spectral characteristics to predict olive 

yield. The study was carried out in an observation site in Wadi El-Natrun city using the dataset from 

season 2014. 

 

Seven vegetation indices were tested in the current study: normalized difference vegetation index 

(NDVI), modified chlorophyll absorption ratio index (MCARI), triangular vegetation index (TVI), 

modified chlorophyll absorption ratio index 1 (MCARI1), modified chlorophyll absorption ratio index 2 

(MCARI2), modified triangular vegetation index (MTVI2) and Chlorophyll index. Molding and validation 

process were carried out for each cultivar. The most accurate models were generated during mature 

stage in the case of the two cultivars Picual and Kalamata and in fruit sat stage in the case of 

Manzanillo cultivar. The lowest accuracy was found during dormancy stage with all cultivars.  
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