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Abstract Remote sensing is an efficient technology and worthy source of earth surface information, as 

it can capture images of reasonably large area on the earth. Due to advancement in the sensor 

technologies there is availability of high spatial as well as spectral resolutions imageries, and also non 

imaging Spectroradiometer. With the use of these imaging and non-imaging data we can easily 

characterize the different species. In this article we have reported work done by worldwide researchers 

for spatial as well as spectral feature extraction from remote sensing data; specifically we have 

focused on classification of crops and use narrow band vegetation indices. It may be observed from 

the report that both spatial resolution and hyperspectral imageries need to be used for better 

classification. 
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1. Introduction  

 

Crops are very distinct in their development stages. In general, the major crops in India can be divided 

into four categories as Food grains like Rice, Wheat, Maize etc, Cash Crops like Cotton, Sugarcane, 

etc. Plantation Crops like Tea, Coffee, Coconut and Horticulture crops such as Fruits and Vegetables; 

also cultivated crops can be classified into three main groups according to the duration of the life cycle, 

yearly, perennial, and semiperennial crops. Yearly crops are planted once or even two-three times a 

year. A perennial crop can stay in field for many years, while a semiperennial crop remains in field only 

for a few years. The duration of the crop cycle impacts on the chances of acquiring cloud-free images 

using optical remote sensing, which are obviously higher for perennial crops. Especially for yearly 

crops, due to their short life cycle, another important aspect for remote sensing is how they are split 

into development stages. Different crops show distinct phonological characteristics and timings 

according to their nature germination, tillering, flowering, ball formation (e.g., cotton), ripening, and so 

forth. Even for the same crop and growing season, the duration and magnitude of each phonological 

stage can differ between the varieties, which introduce data variability for crop type discrimination with 

imaging systems (Galvao, L.S., 2011). Agricultural crops are significantly better characterized, 

classified, modeled and mapped using hyperspectral data. There are many studies supporting this, 
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conducted on a wide array of crops and their biophysical and biochemical variables (Prasad, S.; 

Thenkabail et al., 2011). The importance of analyzing both spectral and spatial patterns has been 

identified as a desired goal by many scientists devoted to multidimensional data analysis. This type of 

processing has been approached from various points of view representing different levels of 

combination between spectral and spatial information (Victor Alchanatis and Yafit Cohen, 2011). 

 

2. Feature Extraction 

 

Feature Extraction is the process of defining Image characteristics or features which effectively 

provides meaningful information for image interpretation or classification. The ultimate goals of feature 

extraction are 

 

1) Effectiveness and efficiency in classification; 

2) To avoid redundancy of data; 

3) To smartly identify useful spatial as well as spectral features; 

4) To maximize the pattern discrimination. 

 

3. Spatial Features 

 

For crop type discrimination spatial features are useful. As crops are planted in rows or straight lines 

either multiple or single rows as per the crop types for convenience and to enhance maximum yields. 

The different spatial arrangement of the crops gives better spatial information but it requires high 

spatial resolution images. In spatial image classification, spatial image elements are combined with 

spectral properties in reaching a classification decision. Most commonly used elements are texture; 

contexture and geometry i.e. shape (Jay Gao, 2009). Due to the availability of commercial high 

resolution multispectral satellite imagery such as Geoeye-1, IKONOS-2, QuickBird -2 with less than 4 

m spatial resolution it has become possible to identify small-scale Features from complex 

environments. However, there have been limitations when using only the spectral information because 

of the complex spatial arrangement of features and the spectral heterogeneity within each class (Han, 

Youkyung, et al., 2012). 

 

3.1. Role of Texture in Classification 

 

In general, it is possible to distinguish between the regular textures manifested by man-made objects 

from the irregular manner that natural objects exhibit texture. Hence, the texture characteristic can be 

used to discriminate between divergent objects. Therefore, they support their segmentation from 

remotely sensed data, both the conventional texture analysis and the grey level co-occurrence matrix 

(GLCM) methods describing the grey value relationships in the neighborhood of the current pixel. 

However, in the GLCM method, this is analyzed within the GLCM space and not from the original grey 

values, as is the case in the former method (Kiema, J. B. K., 2002). 

 

3.2. Gray Level Co-occurrence Matrix (GLCM) 

 

GLCM can be viewed as a two-dimensional histogram of the frequency with which pairs of grey level 

pixels occur in a given spatial relationship, defined by a specific c inter-pixel distance and a given pixel 

orientation. Hence, in the segmentation of urban objects, texture analysis is usually performed within a 

GLCM matrix space (Kiema, J.B.K., 2002). A variety of texture measures can be extracted from the 

GLCM. Four useful measures that can be derived from the probability density (i,j) are energy, 

variance, dissimilarity and homogeneity where energy p (I,j) measures the uniformity of the texture, 

variance measures, the heterogeneity of the pixel values. Similar to contrast dissimilarity measures the 

difference between adjoining pixels and homogeneity measures the tonal uniformity (Jay Gao, 2009).  
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In this regard Li, Z. et al. has worked on spectral and texture features for object-based vegetation 

classification at the species level using airborne high resolution multispectral imagery. Image-objects 

as the basic classification unit were generated through image segmentation. Statistical moments 

extracted from original spectral bands and vegetation index image are used as feature descriptors for 

image objects (i.e. tree crowns). They have also used several state-of-art texture descriptors such as 

Gray-Level Co-Occurrence Matrix (GLCM), Local Binary Patterns (LBP) and its extensions are 

extracted for comparison purpose. Support Vector Machine (SVM) is used for classification in the 

object-feature space. The experimental results showed that incorporating spectral vegetation indices 

can improve the classification accuracy and obtained better results than in original spectral bands, and 

using moments of Ratio Vegetation Index obtained the highest average classification accuracy in this 

experiment. The experiments also indicate that the spectral moment features also outperform or can at 

least compare with the state-of-art texture descriptors in terms of classification accuracy (Li, 

Zhengrong, et al., 2010) 

 

3.3. Local Binary Pattern (LBP) 

 

It is a simple yet very efficient texture operator which labels the pixels of an image by thresholding the 

neighborhood of each pixel and considers the result as a binary number. Due to its discriminative 

power and computational plainness, LBP texture operator has become a popular approach in various 

applications. It can be seen as a uniting approach to the traditionally divergent statistical and structural 

models of texture analysis. Possibly the most important assets of the LBP operator in real-world 

applications is its robustness to monotonic gray-scale changes instigated, for example, by illumination 

differences. Another important property is its computational simplicity, which makes it possible to 

analyze images in challenging real-time settings (Ojala et al., 2002; Matti Pietikäinen, 2010). Spatial 

feature extraction for crop type discrimination works well if we have high spatial resolution satellite 

imagery. Rather than this, spatial information is also useful in spectral based classification for visual 

interpretation in supervised learning. 

 

4. Spectral Features for Crop Classification 

 

Spectral characteristics of green vegetation have very noticeable features two valleys in the visible 

portion of the spectrum are determined by the pigments contained in the plant. Chlorophyll absorbs 

strongly in the blue (0.4-0.5um) and red (0.68 um) regions, also known as the chlorophyll absorption 

bands. Chlorophyll is the primary photosynthetic pigment in green plants. This is the reason for the 

human eye perceiving healthy vegetation as green. When the plant is subjected to stress that hinders 

normal growth and chlorophyll production, there is less absorption in the red and blue regions and the 

amount of reflection in the red waveband increases.  

 

The spectral reflectance signature has a dramatic increase in the reflection for healthy vegetation at 

around 0.7 um. In the near infrared (NIR) between 0.7 um and 1.3 um, a plant leaf will naturally reflect 

between 40% and 60%, the rest is transmitted, with only about 5% being adsorbed. For comparison, 

the reflectance in the green range reaches 15%–20%. This high reflectance in the NIR is due to 

scattering of the light in the intercellular volume of the leaves mesophyll. Structural variability in leaves 

in this range allows one to differentiate between species, even though they might look the same in the 

visible region. Beyond 1.3 um, the incident energy upon the vegetation is largely absorbed or reflected 

with very little transmittance of energy. Three strong water absorption bands are noted at around 1.4, 

1.9, and 2.7 um and can be used for plant water content estimation (Victor Alchanatis and Yafit Cohen, 

2011). Reflectance behavior of vegetation is given in Figure 1 (Muhammad Aqeel Ashraf et al., 2011). 

The spectral signatures of crop canopies in the field are more complex and often quite dissimilar from 

those of single green leaves measured under carefully controlled illumination conditions. Even when 

leaf spectral properties remain quite constant throughout the season, canopy spectra change 

vigorously as the proportions of soil and vegetation change and the architectural arrangement of plant 
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components vary (Pinter Jr, Paul J., et al., 2003). Following steps (4.1 and 4.2) will improve the feature 

extraction process from hyperspectral data.  

 

 
 

Figure 1: Reflectance Behavior of Vegetation 

 

4.1. Band Selection 

 

Band selection is one of the important steps in hyperspectral remote sensing, there are two 

conceptually different approaches of band selection can be used like unsupervised and supervised. 

Due to because of availability of hundreds of spectral bands there may be same values in several 

bands which increase the data redundancy. To avoid the data redundancy and to get distinct features 

from available hundreds of bands we have to choose the specific bands, so by studying the 

reflectance behavior of crops we can select distinct information bands (Roberts, Dar A., et al., 2011). 

 

4.2. Narrowband Vegetation Indices 

 

Spectral indices assume that the combined interaction between a small numbers of wavelengths is 

adequate to describe the biochemical or biophysical interaction between light and matter. The simplest 

form of index is a simple ratio (SR), a potentially greater contribution of hyperspectral systems is their 

ability to create new indices that integrate wavelengths not sampled by any broadband system and to 

quantify absorptions that are specific to important biochemical and biophysical quantities of vegetation. 

Examples include most of the pigment-oriented indices, all indices formulated for the red edge, several 

water absorption indices, and indices that use three or more wavelengths. Vegetation properties 

measured with Hyperspectral Vegetation indices (HVIs) can be divided into three main categories: (1) 

structure; (2) biochemistry; and (3) plant physiology/stress (Roberts, Dar A. et al., 2011). 

 

4.2.1 Structural Properties 

 

These properties include fractional cover, green leaf biomass, leaf area index (LAI), senesced 

biomass, and fraction absorbed photosynthetically active radiation (FPAR). A majority of the indices 

developed for structural analysis were formulated for broadband systems and have narrowband, 

hyperspectral equivalents. 

 

4.2.2. Biochemical Properties 

 

It include water, pigments (chlorophyll, carotenoids, anthocyanins), other nitrogen-rich compounds 

(e.g., proteins), and plant structural materials (lignin and cellulose). 
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4.2.3. Physiological and Stress Indices 

 

It measure subtle changes due to a stress-induced change in the state of xanthophyll’s, changes in 

chlorophyll content, fluorescence, or changes in leaf moisture. In general, biochemical and 

physiological/stress indices were formulated using laboratory or field instruments (≤10 nm spectral 

sampling) and are targeted at very fine spectral features (Roberts, Dar et al., 2011). 

 

Narrowband vegetation indices can be used as potential variables for crop type discrimination. Lenio 

Soares Galvao et al. in their article has suggested the several best vegetation indices of different 

category to discriminate the seven crop types which are greenness/leaf pigment indices (ARVI, EVI, 

NDVI, and SGI); chlorophyll red edge indices (RENDVI and VOG-1); light use efficiency indices (SIPI 

and PRI); and leaf water indices (DWSI and NDWI) (Galvao, 2011) Given in Table 1. 

 

Table 1: Narrowband Vegetation Indices 

 

Sr. No. Index Acronym Formula* Reference 

1 Normalized difference 

vegetation index 

NDVI (ρ864 − ρ671)/(ρ864 + ρ671) Rouse et al. 

2 Simple Ratio SR ρ864/ρ671 Rouse et al. 

3 Enhanced Vegetation Index EVI 2.5([ρ864 − ρ671]/[ρ864 + 6 × ρ671 − 

7.5 × ρ467 + 1]) 

Huete et al. 

4 Atmospherically Resistant 

Vegetation Index 

ARVI (ρ864 − [2 × ρ671 − ρ467])/(ρ864 + [2 × 

ρ671 − ρ467]) 

Kaufman et al. 

5 Sum Green Index SGI (ρ508 + ρ518 + ρ528 + ρ538 + ρ549 + 

ρ559 + ρ569 + ρ579 + ρ590 + ρ600)/10 

Lobell and Asner. 

6 Red Edge Normalized 

Difference Vegetation Index 

RENDVI (ρ752 − ρ701)/(ρ752 + ρ701) Gitelson et al. 

7 Vogelmann Red Edge Index VOG-I ρ742/ρ722 Vogelmann et al. 

8 Structure Insensitive Pigment 

Index 

SIPI (ρ803 − ρ467)/(ρ803 + ρ681) Penuelas et al. 

9 Photochemical Reflectance 

Index 

PRI (ρ529 − ρ569)/(ρ529 + ρ569) Gamon et al. 

10 Disease Water Stress Index DWSI ρ803/ρ1598 Apan et al. 

11 Normalized Difference Water 

Index 

NDWI (ρ854 − ρ1245)/(ρ854 + ρ1245) Gao et al. 

*ρ is the reflectance of the closest Hyperion bands (n, center in nanometers) to the original wavelength formulations. 

 

5. Importance of Hyperspectral Remote Sensing Data 

 

Now a days hyperspectral remote sensing has stepped into a new stage in all over the world. There 

are several advanced hyperspectral imaging systems developed has been playing a very important 

role for agricultural application. Thenkabail et al. in their paper has pointed out that, Hyperion imaging 

spectrometer onboard the Earth Observing One (EO-1) satellite has provided significantly enhanced 

data, over conventional multi-spectral remote sensing systems. Hyperspectral narrowband (HNBs) and 

hyperspectral vegetation indices (HVIs) derived from EO-1 and field spectral measurements in the 

400–2500 nm spectrum allow us to study very specific characteristics of agricultural crops (Thenkabail 

Prasad et al., 2013). Non imaging sensors as discussed earlier also give fine spectral signatures with 

approximate 1-10 nm sampling rate, which is very effective for distinct feature identification. Sayed M. 

Arafat et al. has used field hyperspectral remotely sensed data in their experiment. They applied One 

Way ANOVA and Tukey’s HSD post hoc analysis to choose the optimal spectral zone that could be 

used to differentiate the different crops. Linear regression discrimination (LDA) was applied to identify 

the specific optimal wavebands in the spectral zones in which each crop could be spectrally identified 

(Arafat Sayed et al., 2013). The availability of hyper spectral data overcomes the constraints and 

limitations of low spectral resolution i.e. Multispectral imagery (Dhumal Rajesh K. et al., 2013). 
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Victor Alchanatis and Yafit Cohen have mentioned the importance of hyperspectral images in terms of 

their unique spectral bands, spatial attributes and image processing algorithms that show the added 

value of spatial information when combined with spectral information for mapping plant biophysical and 

biochemical properties of agricultural crops (BB-PACs) (Victor Alchanatis and Yafit Cohen, 2011). 

After considering the limitation and advantages of Hyperspectral and multispectral data we have 

attempted to find combined approach for the problem. The Table 2 given bellow shows how 

researchers have followed multidimensional approach for different applications. 

 

Table 2: Use of Spatial and Spectral Approach with Different Datasets 

 

Sr. No. Author and Year of 

Publication 

Datasets Approach Results 

Spectral Spatial 

1 Prasad S. Thenkabail 

et.al,(2013) 

Hyperion EO and 

Field reflectance 

data 

Identified Optimal 

hyperspectral 

narrowbands (HNBs) 

and hyperspectral 

vegetation indices 

(HVIs) were identified 

for the study of eight 

major agricultural 

worldwide crops 

-- Got 95 % of overall 

accuracy. 

2 Z. Li et.al,(2010) Airborne high 

resolution 

multispectral 

imagery 

Ratio Vegetation 

Index, Support vector 

machine 

Gray-Level Co-

Occurrence Matrix 

(GLCM), Local 

Binary Patterns 

(LBP) 

Vegetation indices 

improves the 

classification accuracy 

than spectral band 

3 Antonio Plaza el.al 

,(2002) 

Multispectral- 

Hyperspectral 

(AVIRIS) 

Unsupervised 

classification and 

spectral information 

for morphological 

operation 

Mathematical 

morphological 

operations 

The proposed method is 

accurate in the task of 

identifying end 

members from 

complicated scene 

4 Gustavo Camps-

Valls,(2010) 

Hyperspectral 

AVIRIS data 

Graph kernel for spatio-spectral 

remote sensing image classification with 

support vector machines 

The proposed kernel is 

a powerful alternative to 

existing approaches 

5 Shwetank1 et.al (2011) EO-1 Hyperion 

data 

For crop 

classification 

Spectral Angle 

Mapper 

 Development of spectral 

library and the SAM 

algorithm gives 89.33% 

overall accuracy and 

map the rice based 

agricultural area better 

than before Pre-

processing 

Classification 86.96%. 

6 Liangpei Zhang 

et.al,(2006) 

HSRS Quick bird 

and IKONOS with 

multispectral band 

PCA, ICA spectral 

transform. 

PSI, Shape 

features 

Use of PSI in 

conjunction with PCA or 

ICA and SVM improves 

the classification 

accuracy 

7 A.N. Tassetti et 

al.,(2010) 

IKONOS 

multispectral 

Images 

NDVI feature and 

TDVI masks 

GLCM and edge-

density 

features 

achieved an accuracy of 

80.01% compared to 

63.44% of accuracy 

achieved by using the 

few spectral bands only 

8 C. S. Murthy et al., 

(2010) 

IRS-1B LISS II for 

Wheat crop 

classification 

s_MLC, pca_MLC, 

i_MLC, Artificial 

Neural Networks 

(ANN) with back-

-- i_MLC has resulted in 

relatively better 

classification of wheat 

whereas ANN 
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propagation method classification is superior 

to that of i_MLC 

9 Sayed M. 

Arafat,(2013) 

Spectral Data from 

Fieldspec3 for 4 

crops 

discrimination 

ANOVA and Tukey’s 

HSD post hoc 

analysis and Linear 

Discriminant Analysis. 

-- They have identified 

optimal spectral range 

to discriminate the 

crops 

 

6. Conclusion 

 

Both spatial and spectral information are necessary for better discriminations of species. Hyperspectral 

data gives detail information about crops but it is necessary to select appropriate bands, Narrowband 

vegetation indices plays important role for mapping plant biophysical and biochemical properties of 

agricultural crops (BB-PACs). Combination of spatial and spectral feature can be used effectively to 

discriminate the crops types but available hyperspectral imageries have not provided good spatial 

resolution which doesn’t give proper spatial information. So that, we need to include both, good spatial 

resolution and hyperspectral imageries for better information extraction.  
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