

Research Article

Development of Water Quality Index and Regression Model for Assessment of Groundwater Quality

K. Ambiga and R. AnnaDurai

Department of Civil Engineering, SRM University, Chennai, Tamil Nadu, India

Correspondence should be addressed to K. Ambiga, ambigacivil.scsvmv@gmail.com

Publication Date: 31 March 2015

Article Link: http://technical.cloud-journals.com/index.php/IJARSG/article/view/Tech-353

Copyright © 2015 K. Ambiga and R. AnnaDurai. This is an open access article distributed under the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract Groundwater samples were collected from 35 locations in Ranipet, Vellore district; Tamil Nadu was assessed in the Monsoon, Post Monsoon and Pre Monsoon season from July 2012 to May 2013. Water quality assessment was carried out for the parameters like pH, Total hardness, Total dissolved solids, Total alkalinity, Electrical conductivity, Chloride, Calcium, Magnesium, Sodium, Potassium, Nitrate, sulfate, Phosphate, Iron, Chromium. The Water Quality Index values and Correlation coefficient values were calculated to check the exceedingly allied and interconnected with water quality parameters (WQPs). The Regression equations involving these known and linked with parameters were formulated for greatly correlated WQPs. Assessment of experimental and predictable values of the different WQPs parameters reveals that the regression equations developed in the study can be very well used for making water quality monitoring by observing the above parameters alone. The result of examination has been used to recommend a model for predicting water quality, the investigation reveals that the ground water of the area desires some extent of treatment before utilization, and it also needs to be confined from the perils of pollution.

Keywords Groundwater; Physico-Chemical Parameters; Seasons, WQI; Correlation and Regression Analysis

1. Introduction

The water is being a worldwide solvent has been and is being utilized by mankind era and now. Of the total amount of large scale water, only 2.4% is circulated on the main land, of which only a small portion can be utilized as fresh water. The accessible clean water to man is only just 0.3-0.5% of the total water available on the earth and therefore, its sensible use is essential (Mondal et al., 2005). The fresh water is a predetermined and partial resource (Yogendra et al., 2008). The consumption of water from ages has lead to its over use together with the increasing population along with enhanced standard of living as a effect of scientific innovations (Todd, 1995 and Indra Raj, 2000). This pollution of groundwater is not away from the harms of improvement. Thus, eminence of groundwater is failing at a earlier speed suitable to contamination vary from septic tanks (Nanda Balan et al., 2012), land fill

leachates, domestic sewage agricultural runoff/ agricultural fields (Mishra et al., 2012) and industrial wastes. Contamination of groundwater also depends on the geology of the region and it is fast in hard rock areas mainly in lime stone regions where wide cavern systems are lower the water table (Manguidya et al., 2013). This is an aspect common, not only in urbanized countries but also in developing countries like India. The changes in excellence of groundwater reply to difference in physical, chemical and biological environments throughout which it passes (Bharti et al., 2011). The most important are to extend a WQI of the study area and Regression model for estimation of groundwater parameter.

2. Materials and Methods

2.1. Study Area

In the present study area about 154.52 Sq.Km lies between Latitude N 12°52'30" – 12°57'30" and Longitude E 79°15'00"–79°25'00" is situated in North of Tamil Nadu in India. It includes Ranipet, Walajapet, Arcot and Melvishram and is mainly Palar River and Ponnai River. The Ranipet area is a chronic contaminated area and one of the biggest exporting centers of tanned leather. Many small-scale tanneries are dealing out the leather in the study area and discharging their effluents on the open land and nearby water bodies (Elangovan et al., 2013). There are 240 tannery industrial units located like ceramic, refractory, boiler auxiliaries plant, and chromium chemicals. Studies of groundwater also indicated the high concentrations of chromium in Palar river basin, which is much more than the permissible limit in drinking water. These tanneries are polluting in the Palar River, causing ecological degradation and health hazards (Ramakrishnaiah et al., 2009). In nature the study area is covered by crystalline rocks of Archaean age consisting of Granites and some essential invasive bodies.

3. Methodology

3.1. Sample Collection and Processing

The study area out of 35 Water samples was collected during July 2012 - May 2013 (Figure 1). The water samples were full in pre-cleaned polyethylene bottles; after collection the samples was directly placed in mysterious boxes and processed within 6 hr of collection (Neerja Kalra et al., 2012). The collected samples were analyzed by using physical and chemical water quality parameters like pH, EC, TDS, TA, chloride, Total hardness sulphate, sodium, calcium, magnesium, and potassium, iron, nitrate and chromium as per APHA standard. In the present study, 14 parameters were considered and calculated the WQI and correlation coefficients along with water quality characteristics.

3.2. WQI (Water Quality Index)

WQI is defined as a method of ranking that provides the composite power of individual water quality parameter on the overall quality of water. It is premeditated from the point of view of human utilization. Water quality and its suitability for drinking purpose can be examined by influential its quality index. The standards for drinking purpose (Rosario Arun Kumar et al., 2012) have been measured for calculation of WQI. In this method the weight age for various water quality parameters is implicit to be inversely proportional to the suggested standards for the resultant parameters (Yogendra et al., 2008). The WQI has been calculated to assess the suitability of groundwater quality of the study area for drinking purposes. The WHO (2004) standards for drinking purposes have been measured for the computation of WQI. For the calculation of WQI, Fourteen parameters such as: pH, EC, Total Hardness, TDS, Calcium, Magnesium, Sodium, Potassium, Iron, Fluorides, Chlorides, Sulphates Nitrates and Chromium) have been used.

In the first step, fourteen parameters have been assigning a weight (w_i) according to its virtual significance in the overall quality of water for drinking purposes (Table 1). The maximum weight of 5 has been allocated to parameters such as Nitrate due to their major importance in water quality assessment (Neerja Kalra et al., 2012). The remaining parameters like sodium and potassium, calcium, magnesium were assigned a weight between 1 and 5 depending on their significance in the overall quality of water for drinking purposes.

In the second step, the relative weight (W_i) is determined using a weighted arithmetic index formula (Brown et al., 1972; Horton, 1965; Tiwari and Manzoor, 1988).

$$\mathbf{W}_{i} = \frac{\mathbf{W}_{i}}{\sum_{i=1}^{n} \mathbf{W}_{i}}$$

Where, w_i is the weight of each parameter and n is the number of parameter.

In the third step, quality rating scale (Q_i) for each parameter is calculated by dividing its concentration in each water sample (C_i) by its relevant standard S_i according to the rule of WHO (2004) and then multiplied by 100.

$$Q_i = (C_i / S_i) \times 100$$

In the forth step, the Sub index of ith parameter SI_i is determined for each chemical parameter, which is used to determine the WQI as per the following equation.

$$SI_i = W_i \times Q_i$$

Correlation Coefficient (r): Let x and y be any two variables and (Xi, Yi) be n pairs of observed values of these variables (I =1,2,3.....n). The correlation coefficient r between the variables x and y is given by equation

r =
$$\frac{n \Sigma x y \Sigma x \Sigma y}{\sqrt{[n \Sigma x^{2} - (\Sigma x)^{2}][n \Sigma y^{2} - (\Sigma y)^{2}]}} -\dots (1)$$

Where, the summations are taken above 1 to n (n=number of observations). The values of observed parameters a and b were considered with the help of equations 2 and 3.

a =
$$n \Sigma x y - \Sigma x \Sigma y$$

------ (2)
 $n \Sigma x^{2} - (\Sigma x)^{2}$

Regression equation

y = a x + b ------ (3)

The study of correlation between various water quality parameters, the regression analysis was carried out using software SPSS 18.

Figure 1: Well Sampling Stations of the Study Area

Parameters	Standard Permissible Value (Si)	Weight	Relative Weight
Farameters	(Who, 2004)	(W i)	(W _i)
рН	6.5 - 8.5	4	0.09
TDS	500	4	0.09
EC	500	4	0.09
Th	200	3	0.06
Ca	75	2	0.04
Mg	50	1	0.02
Nitrate	45	5	0.11
Chloride	250	3	0.06
Fluoride	1-1.5	4	0.09
Sodium	200	2	0.04
Potassium	200	2	0.04
Iron	1	4	0.09
Sulphate	250	4	0.09
Chromium	0.05	5	0.11
	Total	47	1.00

Table 1: WHO Standards Weight (W_i) and Calculated Relative Weight (W_i) for Each Parameter

	Statistics for Monsoon													
WQPs	рΗ	TDS	EC	TH	Ca	Mg	NO ₃	CI	F	Na	K	Iron	SO ₄	Cr
Minimum	7.0	362.0	516.0	212.0	48.0	22.0	2.0	42.0	0.3	28.0	4.0	0.1	29.0	0.0
Maximum	7.4	4232.0	6046.0	1200.0	320.0	96.0	70.0	1609.0	0.9	790.0	50.0	0.5	486.0	0.0
Mean	7.2	1838.9	2626.9	487.8	117.9	46.0	29.4	507.5	0.5	358.9	25.6	0.3	219.5	0.0
Std. Deviation	0.1	910.1	1300.0	223.1	64.4	17.0	21.6	340.2	0.2	187.3	12.1	0.1	102.7	0.0
Variance	0.0	828228.9	1689879.4	49773.3	4144.3	288.1	464.9	115728.1	0.0	35073.5	146.5	0.0	10538.5	0.0
Statistics for Post Monsoon														
WQPs	pН	TDS	EC	TH	Са	Mg	NO ₃	CI	F	Na	К	Iron	SO ₄	Cr
Minimum	6.8	358.0	300.0	140.0	28.0	16.0	2.0	60.0	0.1	0.0	3.6	0.0	4.0	0.0
Maximum	8.5	3790.0	5414.0	1230.0	256.0	153.0	50.0	2100.0	2.0	113.3	53.3	10.0	66.0	0.5
Mean	7.6	1334.0	1833.6	543.1	108.9	64.0	8.0	481.4	0.7	58.2	15.6	0.7	45.3	0.2
Std. Deviation	0.5	652.8	954.1	289.9	58.7	35.7	8.1	377.3	0.6	33.3	12.0	1.8	12.5	0.1
Variance	0.2	426157.8	910287.6	84063.4	3446.2	1277.7	64.9	142377.3	0.4	1109.3	143.3	3.1	155.9	0.0
					Statisti	cs for Pre	e Monso	on						
WQPs	рΗ	TDS	EC	TH	Са	Mg	NO ₃	CI	F	Na	К	Iron	SO ₄	Cr
Minimum	6.5	586.0	836.0	200.0	40.0	24.0	0.0	50.0	0.3	6.7	0.2	0.0	23.0	0.0
Maximum	8.0	4422.0	6317.0	1550.0	310.0	186.0	30.0	1685.0	5.0	57.3	5.1	0.1	99.0	0.8
Mean	7.4	1685.4	2411.4	574.3	114.9	68.9	14.9	525.3	1.1	25.5	1.1	0.0	72.1	0.4
Std. Deviation	0.4	854.9	1220.6	335.1	67.0	40.2	6.3	342.1	0.7	11.3	1.0	0.0	19.6	0.2
Variance	0.2	730787.0	1489803.9	112284.0	4491.4	1618.5	39.6	117005.8	0.6	128.6	1.0	0.0	385.6	0.0

Table 2: Normal Statistics of Water Quality Parameters of Groundwater Samples

4. Results and Discussion

Statistics for three season based on parameters values shown in Table 2. The computed WQI values ranges from 48.69 to 245.24 for monsoon period, values range from 0 to 351.02 for Post monsoon period and 0 to 344.62 for Pre monsoon period had shown in Table 3.

Table 3: Water Quality Classification Based On WQI Values of the St	udy A	Area
---	-------	------

Water Quality	WQI Values	WQI Of samples for Monsoon	% of water samples (Monsoon)	WQI Of samples for Post Monsoon season	% of water samples (Post Monsoon)	WQI Of samples for Pre Monsoon season	% of water samples (Pre Monsoon)
Excellent water	<50	48.69	9%	0	0%	0	0%
Good water	50-100	88.12	17%	89.91	11%	0	0%
Poor water	100-200	135.06	26%	136.34	17%	166.17	22%
Very poor water	200-300	245.24	48%	223.45	28%	236.29	32%
unfit for use	>300	-	-	351.02	44%	344.62	46%

The relationship between two variables is the correlation coefficient which shows how one variable predicts the other. Associated with correlation coefficient is r, which is the percentage of variance in the dependent variable, explained by the independent variable (Tiwari et al., 2011). The results of the correlation analysis are considered in the subsequent interpretation. A high correlation coefficient (nearly 1 or -1) means a good relationship between two variables, and a correlation coefficient around zero means no relationship. Positive values indicate a positive relationship while negative values of r indicate an inverse relationship. The correlation coefficients (r) among various water quality

parameters of ground water of the study area in monsoon, post monsoon and pre monsoon seasons were calculated and the values of correlation coefficients (r) are given in Table 4, 5 and 6, respectively.

WQPs	рН	TDS	EC	TH	Ca	Mg	NO ₃	CI	F	Na	K	Iron	SO ₄	Cr
pН	1													
TDS	.250	1												
EC	.251	1.000	1											
TH	.231	.959	.959	1										
Ca	.228	.941	.941	.988	1									
Mg	.231	.907	.907	.935	.872	1								
No3	.057	.219	.219	.227	.254	.160	1							
CI	.279	.928	.928	.907	.873	.898	.168	1						
F	.312	.410	.410	.352	.360	.299	072	.407	1					
Na	.239	.988	.988	.917	.898	.868	.228	.897	.393	1				
K	.261	.841	.841	.776	.742	.767	.252	.772	.238	.859	1			
Iron	.241	.289	.289	.303	.332	.193	.189	.314	.257	.305	.187	1		
SO ₄	.029	.844	.844	.857	.832	.826	.180	.860	.173	.827	.696	.302	1	
Cr	254	321	321	318	320	297	.147	345	149	310	360	182	254	1

Table 4: Correlation Matrices for Water Quality Parameters during Monsoon Season

The results of the statistical analysis which are shown in table 4 (Monsoon season) gave an indication that TDS has positive and significant correlation with EC, TH, Ca, Mg, ,Cl⁻, Na, K and SO₄²⁻, weak correlation with Nitrate and negative correlation with Chromium. EC has a positive and signification correlation with TH, Ca, Mg, Cl, Na, K and SO₄²⁻, weak correlation with Nitrate and negative correlation with Chromium. Total hardness has positive and signification correlation with Ca, Mg, Cl, Na, K and SO₄²⁻, weak correlation with Chromium. Total hardness has positive and signification correlation with Ca, Mg, Cl, Na, K and SO₄²⁻, weak correlation with Chromium. Calcium has positive and signification correlation with Mg, Cl⁻, Na, K and SO₄²⁻, weak correlation with Chromium. Magnesium has positive and signification correlation with Cl⁻, Na, K and SO₄²⁻, weak correlation with Chromium. Magnesium has positive and signification correlation with Cl⁻, Na, K and SO₄²⁻, weak correlation with Nitrate and negative correlation with Chromium. Chloride has positive and signification correlation with Na, K and SO₄²⁻, weak correlation with Nitrate and negative correlation with Chromium. Nitrate and Chromium are weakly correlated with most of the water quality parameters.

Table 5: Correlation Matrices	for Water Quality Parameters	during Post Monsoon Season

WQPs	рН	TDS	EC	TH	Ca	Mg	NO ₃	CI	F	Na	K	Iron	SO ₄	Cr
pН	1													
TDS	.074	1												
EC	013	.882	1											
TH	099	.816	.741	1										
Ca	095	.814	.740	1.000	1									
Mg	099	.811	.736	.982	.983	1								
NO ₃	194	.190	.163	.378	.374	.374	1							
CI	.032	.906	.783	.643	.638	.642	.011	1						
F	.177	.559	.515	.739	.739	.741	.333	.422	1					
Na	.072	034	093	.061	.068	.098	.133	203	.050	1				
K	.325	085	138	281	278	245	176	045	299	.096	1			
Iron	034	.139	.091	.294	.292	.289	.876	107	.366	.253	130	1		
SO ₄	168	181	233	280	284	281	432	.012	350	.027	024	473	1	
Cr	.074	.622	.559	.616	.621	.640	.101	.561	.700	.005	252	.117	214	1

In post monsoon (Table 5), TDS has positive and signification correlation with EC, TH, Ca, Mg and Cl⁻ weak correlation with iron and negative correlated with Sodium, Potassium, and Sulphate. EC has positive and signification correlation with TH, Ca, Mg, Cl⁻, weak correlation with iron and negative correlated with Sodium, Potassium, sulphate. Total hardness has positive and signification correlation with calcium, magnesium and fluoride, weak correlation with sodium and negative correlation with potassium, sulphate. Calcium has positive and signification correlation with Mg and Fluoride, weak correlation with potassium, sulphate. Nitrate has positive and signification correlation with iron, weak correlation with chloride, and negative correlation with potassium and sulphate.

In pre monsoon season (Table 6), TDS has positive and signification correlation with EC, TH, Ca, Mg, Cl⁻, weak correlation with potassium and negative correlated with Nitrate, iron and chromium. EC has positive and signification correlation with TH, Ca, Mg, Cl⁻, weak correlation with potassium and negative correlated with Nitrate, iron and chromium. Total hardness has positive and signification correlation with calcium, magnesium and chloride, weak correlation with sulphate and negative correlation with nitrate, fluoride, potassium, iron and chromium. Calcium has positive and signification correlation with Mg and chloride, weak correlation with sulphate and negative correlation with nitrate, fluoride, weak correlation with sulphate and negative correlation with sulphate, potassium, iron and chromium. Chloride has positive and signification correlation with sodium, weak correlation with fluoride, and negative correlation with iron and chromium.

WQPs	рН	TDS	EC	TH	Ca	Mg	NO ₃	CI	F	Na	Κ	Iron	SO ₄	Cr
рН	1													
TDS	.255	1												
EC	.256	1.000	1											
TH	.307	.895	.893	1										
Ca	.307	.895	.893	1.000	1									
Mg	.305	.895	.892	1.000	1.000	1								
NO ₃	022	081	081	252	252	256	1							
CI	.176	.953	.955	.760	.760	.760	015	1						
F	.001	.043	.043	109	109	110	.452	.112	1					
Na	.229	.758	.763	.545	.545	.544	.075	.855	.350	1				
K	075	.004	.005	190	190	189	.296	.143	.685	.376	1			
Iron	.017	225	228	061	061	060	191	282	.322	158	.165	1		
SO ₄	.138	.686	.688	.457	.457	.456	.178	.672	.135	.627	.124	396	1	
Cr	.069	214	214	192	192	192	105	202	205	098	.001	072	073	1

Table 6: Correlation Matrices for Water Quality Parameters during Pre Monsoon Season

Table 7: Least Square of the Relation (Y = AX + B) Among Significantly Correlate Parameters

Y (dependent)	X (Independent)	correlation	b	а	Regression Equation	R Square						
Monsoon Season												
EC	TDS	1.000	0.099	1.428	EC = 1.428 TDS +0.099	1.000						
EC	TH	0.959	-98.079	5.586	EC = 5.586 TH – 98.079	0.919						
EC	Cl	0.928	826.993	3.547	EC = 3.547 Cl ⁻ +826.993	0.861						
EC	SO4 2-	0.844	280.881	10.689	EC = 10.689 SO ₄ ²⁻ + 280.881	0.712						
EC	Mg ²⁺	0.907	-570.628	69.467	EC = 69.467 Mg ²⁺ - 570.628	0.823						
EC	Na ²⁺	0.988	165.103	6.859	EC = 6.859 Na ²⁺ + 165.103	0.976						
TDS	TH	0.959	-68.922	3.911	TDS = 3.911 TH – 68.922	0.919						
TDS	Cl	0.928	579.012	2.483	TDS = 2.483 Cl ⁻ + 579.012	0.861						
TDS	SO4 2-	0.844	196.596	7.483	TDS = 7.483 SO ₄ ²⁻ + 196.596	0.712						
TDS	Ca ²⁺	0.941	269.311	13.308	TDS=13.308 Ca ²⁺ +269.311	0.886						
TDS	Mg ²⁺	0.907	-399.486	48.631	TDS=48.631 Mg ²⁺ - 399.486	0.823						
TH	SO ₄ ²⁻	0.857	79.140	1.862	TH=1.862 SO ₄ ²⁻ +79.140	0.734						
TH	Ca ²⁺	0.988	84.100	3.423	TH=3.423 Ca ²⁺ + 84.100	0.975						

IJARSG– An Open Access Journal (ISSN 2320 – 0243)

TH	Mg ²⁺	0.935	-77.731	12.287	TH=12.287 Mg ²⁺ - 77.731	0.874
Ca ²⁺	Mg ²⁺	0.872	-34.208	3.306	Ca ²⁺ =3.306 Mg ²⁺ - 34.208	0.760
Ca ²⁺	SO ₄ ²⁻	0.832	3.471	0.522	$Ca^{2+}=0.522 SO_4^{2-}+3.471$	0.692
Ca ²⁺	TDS	0.941	-4.519	0.067	Ca ²⁺ =0.067 TDS – 4.519	0.886
Mg ²⁺	SO4 2-	0.826	16.046	0.137	Mg ²⁺ =0.137 SO ₄ ²⁻ + 16.046	0.683
Mg ²⁺	TDS	0.907	14.922	0.017	Mg ²⁺ =0.017 TDS + 14.922	0.823
Na ²⁺	Cl	0.897	108.343	0.494	Na ²⁺ =0.494 Cl ⁻ + 108.343	0.804
K	Cl	0.772	11.663	0.027	K =0.027 Cl ⁻ + 11.663	0.596
Cl	TDS	0.928	-130.454	0.347	Cl ⁻ =0.347 TDS – 130.454	0.861
SO4 2-	TDS	0.844	44.398	0.095	SO ₄ ²⁻ =0.095 TDS + 44.398	0.712
Na ²⁺	TDS	0.988	-15.014	0.203	Na ²⁺ =0.203 TDS – 15.014	0.976
			Post Mor	nsoon		
EC	TDS	0.882	113.718	1.289	EC = 1.289 TDS +113.718	0.778
EC	TH	0.741	508.707	2.439	EC = 2.439 TH -508.707	0.550
EC	Cl	0.783	880.867	1.979	EC = 1.979 Cl ⁻ +880.867	0.613
EC	Mg ²⁺	0.736	576.977	19.644	EC = 19.644 Mg ²⁺ + 576.977	0.542
TDS	TH	0.816	336.457	1.837	TDS = 1.837 TH +336.457	0.665
TDS	Cl	0.906	579.048	1.568	TDS = 1.568 Cl ⁻ + 579.048	0.822
TDS	Ca ²⁺	0.814	348.392	9.049	TDS=9.049 Ca ²⁺ + 348.392	0.662
TDS	Mg ²⁺	0.811	386.051	14.818	TDS=14.818Mg ²⁺ + 386.051	0.658
TH	Ca ²⁺	1.000	5.407	4.937	TH=4.937Ca ²⁺ + 5.407	0.999
TH	Mg ²⁺	0.982	33.381	7.969	TH= 7.969 Mg ²⁺ + 33.381	0.965
Ca ²⁺	Mg ²⁺	0.983	5.651	1.614	Ca ²⁺ =1.614Mg ²⁺ + 5.651	0.966
Ca ²⁺	TDS	0.814	11.293	0.073	Ca ²⁺ =0.073TDS + 11.293	0.662
Mg ²⁺	TDS	0.811	4.706	0.044	Mg ²⁺ =0.044TDS + 4.706	0.658
Cl	TDS	0.906	-217.469	0.524	Cl ⁻ =0.524 TDS -217.469	0.822
			Pre Monsooi	n Season		
EC	TDS	1.000	113.718	1.289	EC = 1.289 TDS +113.718	0.778
EC	TH	0.893	508.707	2.439	EC = 2.439 TH + 508.707	0.550
EC	Cl	0.955	880.867	1.979	EC = 1.979 Cl ⁻ + 880.867	0.613
EC	Mg ²⁺	0.892	576.977	19.644	EC = 19.644 Mg ²⁺ +576.977	0.542
TDS	TH	0.895	336.457	1.837	TDS = 1.837 TH + 336.457	0.665
TDS	Cl	0.953	579.048	1.568	TDS = 1.568 Cl ⁻ + 579.048	0.822
TDS	Ca ²⁺	0.895	348.392	9.049	TDS=9.049 Ca ²⁺ +348.392	0.662
TDS	Mg ²⁺	0.895	386.051	14.818	TDS= 14.818 Mg ²⁺ + 386.051	0.658
TH	Ca ²⁺	1.000	5.407	4.937	$TH=4.937 Ca^{2+} + 5.407$	0.999
TH	Mg ²⁺	1.000	33.381	7.969	TH=7.969 Mg ²⁺ +33.381	0.965
Ca ²⁺	Mg ²⁺	1.000	5.651	1.614	Ca ²⁺ = 1.614 Mg ²⁺ +5.651	0.966
Ca ²⁺	TDS	0.895	11.293	0.073	Ca ²⁺ =0.073 TDS +11.293	0.662
Cl	TDS	0.953	-217.469	0.524	Cl =0.524 TDS -217.469	0.822

Figure 2: Linear Plot between TH Vs Ca & Mg, EC Vs Ca & Mg and EC Vs Na and Cl of groundwater in Monsoon Season

Figure 3: Linear Plot between TH Vs Ca & Mg, EC Vs TDS and TDS Vs Cl of groundwater in Post Monsoon Season

Figure 4: Linear Plot between TH Vs Ca & Mg, TDS Vs EC and TDS Vs Cl of groundwater in Post Monsoon Season

5. Conclusion

The experimental study of groundwater by means of 14 physical and chemical parameters of the study area identify with the intention of water quality was poor, very poor and inappropriate for drinking purpose. The calculated WQI values lies between 48.69 to 245.24 during monsoon period, values lies between 0 to 351.02 during Post monsoon period and values lies between 0 to 344.62 during Post monsoon period respectively. The Percentage of water quality index shows that maximum in post and pre monsoon and minimum in monsoon period. Results of correlation analysis show that EC, TH and TDS are having high correlation with most of the parameters for all the seasons. Since, the EC and TH find high correlation with the Ca and Mg, Na and CI (Figure 2) during Monsoon season. Since the TH, EC and TDS find high correlation with the Ca and Mg, TDS and Cl (Figure 3) during post monsoon season. Similarly the EC, TH and TDS find high correlation with the Ca and Mg, TDS and CI (Figure 4) during pre-monsoon season. Regression equations relating the EC, TDS, TH and these parameters were formulated are given in Table 7. This indicates the increase in the pollution load due to the intrusion of domestic sewage and industrial effluents into the Groundwater. Hence, consistent monitoring measures are very important to assess the impact of the percolation of the wastewater, causing contamination of the groundwater in the study area, and a preventive mechanism coupled with remedial measures is necessary for the benefit of mankind. It is also recommended that water analysis should be carried out from time to time to monitor the rate and kind of contamination. It is need of human to expand awareness among the people to maintain the cleanness of water at their highest quality and purity levels to achieve a healthy life.

Acknowledgements

The author wish to acknowledge the research grant to Vice-Chancellor, Dean (E&T) and Faculty of Civil Engineering, SRM University, Chennai. I pay my special thanks to Mr. Kannan, Asst. Professor in MCA Dept., Mrs. Vijayalakshmi, Asst. Professor in Maths Dept., in SCSVMV University for giving valuable suggestions. Thanks are also due to Mr. N. Seshadri Sekhar, HOD, Mrs. R. Sumathi, Asst. Professor–II and Mr. M. Suresh Kumar, Asst. Professor, Department of Civil & Structural Engineering, SCSVMV University, Kanchipuram, Tamil Nadu. Thanks to SRM and SCSVMV University (Environmental Engineering) for giving lab facilities to carry out this research works.

References

Abraham Bairu et al. *Application of Water Quality Index to Assess Suitability of Groundwater Quality for Drinking Purposes in Hantebet Watershed, Tigray, Northern Ethiopia.* ISABB Journal of Food and Agriculture Science. 2011. 1 (1) 22-30.

Ahmad, I., et al. *Determination of Water Quality Index (WQI) for Qalyasan Stream in Sulaimani City, Kurdistan Region of IRAQ.* International Journal of Plant, Animal and Environmental Sciences. 2012. 2 (4) 148-157.

APHA, 2002: Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington D.C.

Bajpayee et al. Assessment by Multivariate Statistical Analysis of Ground Water Geochemical Data of Bankura, India. International Journal of Environmental Sciences. 2012. 3 (2) 870-880.

Bharti, N., et al. *Water Quality Indices Used for Surface Water Vulnerability Assessment.* International Journal of Environmental Sciences. 2011. 2 (1) 154-173.

BIS, 1992: Indian Standard for Drinking Water Specification – 10500. Bureau of Indian Standards, New Delhi.

Chandra Sekhar, M., et al., 1999: The use of DRASTIC Modeling Indices for the Assessment of Groundwater Pollution Potential, Impacts of Urban Growth on Surface Water and Ground Water Quality (Proceedings of IUGG 99 Symposium HSS, Birmingham, IAHS Pub. No. 259.

Charmaine Jerome et al. *Evaluation of Water Quality Index and Its Impact on the Quality of Life in an Industrial Area in Bangalore, South India.* American Journal of Scientific and Industrial Research. 2010. 1 (3) 595-603.

Chenini, I., et al. *Evaluation of Ground Water Quality Using Multiple Linear Regression and Structural Equation Modeling.* Int. J. Environ. Sci. Tech. 2009. 6 (3) 509-519.

Dhakad, N.K., et al. *Water Quality Index of Ground Water (GWOI) of Jhabua Town, M.P. (India).* Journal of Environmental Research and Development. 2008. 2 (3) 443-446.

Elangovan, N.S., et al., 2013: Assessment of Groundwater Quality along the Cooum River, Chennai, *Tamil Nadu.* Indian Journal of Chemistry, Article ID 672372. 10.

Gunvant, H., et al. *Ground water Quality Assessment Nearer to the Dye User Industry, Scholars Research Library.* Archives of Applied science Research. 2010. 2 (6) 126-130.

Hemant Pathak et al. Assessment of Physico - Chemical Quality of Groundwater in Rural Area nearby Sagar City, MP, India, Pelagia Research Library. Advances in Applied Science Research. 2012. 3 (1) 555-562.

Hemant Pathak et al. Assessment of Physico-Chemical Quality of Groundwater by Multivariate Analysis in some Populated Villages nearby Sagar City, MP, India. Environmental & Analytical Toxicology. 2012. 2 (5) 1-5.

Magesh, N.S., et al. *Groundwater Quality Assessment using WQI and GIS Techniques, Dindigul District, Tamil Nadu.* Arab Journal of Geoscience. 2012.

Maheswari, J., et al. *Groundwater Quality Assessment in Vaippar River Basin Tamilnadu*. International Journal of Current Research. 2011. 3 (12) 149-152.

Mamadou Samake et al. Assessment of Groundwater Pollution Potential of the Dalton Basin, Northern China. Journal of Sustainable Development. 2010. 3 (2) 140-152.

Manguidya Rupal et al. *Quality Characterization of Groundwater using Water Quality Index in Surat city, Gujarat, India.* International Research Journal of Environmental Sciences. 2012. 1 (4) 14-23.

Mishra, U.K., et al. Assessment of Quality and Pollution Potential of Groundwater around Dadhaura Area, Rewa District, Madhya Pradesh, India. Earth Science Research. 2012. 1 (2) 249-261.

Mondal, N.C., et al. *Impact of Pollution Due to Tanneries on Groundwater Regime*. Current Science. 2005. 8 (12) 1988-1994.

Mouna Ketata et al. Use of Geographical information System and Water Quality Index to Assess Groundwater Quality in El Khairat Deep Aquifer. Iranica Journal of Energy & Environment. 2011. 2 (2) 133-144.

Muthulakshmi, L., et al. *Application of Correlation and Regression Analysis in Assessing Ground Water Quality.* International Journal of ChemTech Research. 2013. 5 (1) 353-361.

Nanda Balan, I., et al. *An Assessment of Groundwater Quality Using Water Quality Index in Chennai, Tamil Nadu, India.* Chronicles of Young Scientists. 2012. 3 (2) 146-150.

Neerja Kalra et al. *Water Quality Index Assessment of Ground Water in Koilwar block of Bhojpur (Bihar).* Journal of Chemical and Pharmaceutical Research. 2012. 4 (3) 1782-1786.

Palanisamy, P.N., et al. Assessment of Ground Water Quality in and around Gobichettipalayam Town, Erode District, Tamil Nadu. E – Journal of Chemistry. 2007. 4 (3) 434-439.

Patel, R.L., et al., 2011: *Temporal Variation and Regression Analysis of Groundwater Quality Parameters: A Case Study.* National Conference on Recent Trends in Engineering & Technology. 13-14.

Prakash, K.L., et al. *Groundwater Quality - Assessment on Anekal Taluk, Bangalore Urban District, India.* Journal of Environmental Biology. 2006. 27 (4) 633-637.

Ramakrishnaiah, C.R., et al. Assessment of Water Quality Index for the Groundwater in Tumkur Taluk, Karnataka State, India. E-Journal of Chemistry. 2009. 6 (20) 523-530.

Ravi Kumar et al. A Correlation and Regression Study on the Ground Water of Vaiyampatti Village, *Tiruchirappalli District.* Scholars Research Library Der Pharma Chemica. 2012. 4 (5).

Rizwan Reza et al. Assessment of Ground Water Quality Status by using WQI method in Orissa, India. World Applied Sciences Journal. 2010. 9 (12) 1392-1397.

Rosario Arun Kumar, X., et al. *Geochemical Assessment of Groundwater Quality in Cuddalore, Tamil Nadu.* World Applied Sciences Journal. 2012. 17 (8) 1033-1039.

Sasane, V.V., et al. Assessment of Ground Water Quality Status using NSFWQI Method in Selected Rural Area of Kopargaon, Ahmednagar, Maharashtra. International Journal of Advanced Technology in Civil Engineering. 2013. 2 (1) 1-5.

Shahid, S., et al. *Groundwater Potential Modelling in a Soft Rock Area using a GIS.* International Journal of Remote Sensing. 2000. 21 (9) 1919-1924.

Shivasharanappa et al. Assessment of Ground Water Quality Characteristics and Water Quality Index (WQI) of Bidar City and Its Industrial Area, Karnataka State, India. International Journal of Environmental Sciences. 2011. 2 (2) 965-976.

Tiwari, R.N. Assessment of Groundwater Quality and Pollution Potential of Jawa Block Rewa District, Madhya Pradesh, India. Proceedings of the International Academy of Ecology and Environmental Sciences. 2011. 1 (3-4) 202-212.

Yogendra, K., et al., 2008: *Determination of Water Quality Index and Suitability of an Urban Water body in Shimoga Town, Karnataka.* Proceedings of Taal: The 12th World Lake Conference. SPSS Advanced Models™ 18. 342-346.