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Abstract The objective of this work was to evaluate the potential of hyperspectral classification 

techniques in the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

reflectance data (visible to short wave infrared region) and spatial resolution (15 and 30 m), to map 

volcanic rocks in Ametista do Sul Region, Rio Grande do Sul State, Brazil. This region is one of the 

most important amethyst mineralization of the World. The spectral behavior of these rocks is similar to 

shadows and soils when interpreted with traditional digital classification techniques and multispectral 

sensors, like TM-Landsat, CCD-CBERS, etc. As an alternative was applied hyperspectral image 

processing technique (Spectral Angle Mapper - SAM) to identify and discriminate basalt rocks 

occurrence in mixed pixels. Due to vegetation around and covering some outcrops and the pixel 

spatial resolution, it was not possible to extract a basalt endmember directly into the ASTER image, 

being used so an endmember from NASA spectral library. To compare SAM results with traditional 

classification techniques were applied the Maximum Likelihood (MaxVer) algorithm. The SAM 

technique produced better results than MaxVer, but the error persisted, even in a lesser proportion, in 

mixed pixels with “Shadows”, "Soils" and “Basalt” classes. 

Keywords Classification Methods; MaxVer; SAM; Spectral Analysis 

 

1. Introduction 

 

The Remote Sensing and auxiliary computing techniques are important tools used for identification, 

geological mapping and mineral exploration. These tools aim the spectral discrimination of targets. To 

accomplish this discrimination is important to know about the spectral behavior through the 

observation of diagnostic features that express the physical and chemical composition of each target. 

One way to perform this study is to use orbital sensors that allow working with an adequate spatial and 

spectral scale. 
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It´s difficult to perform a digital classification closer of the scene reality because the radiance recorded 

by a sensor may be a result of the mixture of many materials inside the pixel, added by the 

atmospheric scattering. 

 

The radiance recorded by a sensor in a pixel may be a mixture of many materials, hampering a digital 

classification closer the scene reality. Traditional classification methods, such as MaxVer and 

Minimum Distance [26], use to be applied by prior knowledge of the targets by collecting training 

samples. Spectral classification methods are also applied by a prior knowledge of the targets, but 

implying a supervised classification based on sampling and analysis of spectral signatures and their 

comparison with the image pixels spectra. Such signatures can be obtained collecting endmembers 

(defined as spectrally "pure" features) on the image, measuring in laboratories or field with a 

spectroradiometer, or searching in spectral libraries. The classification by spectral analysis allows 

decompose each pixel by its correlation with the material that composes it (spectrum) in a direct way, 

establishing location and, sometimes, sub-pixel composition [30]. 

 

In this context, this study aims to evaluate the potential of hyperspectral classification techniques in the 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) [1] images to map and 

identify volcanic rocks extracted from amethyst mines in Ametista do Sul region, north of Rio Grande 

do Sul State, Brazil (Figure 1.1).  

 

The basalt rock is very dark, compact, sometimes with cavities and some crystals developed on the 

solid mass formed by minerals rich in iron and magnesium. It is a basic igneous rock composed mainly 

of fine grains of plagioclase feldspar enriched with calcium and pyroxene. Some others minerals such 

as olivine, magnetite and apatite can be present in the rock.  

 

1.1. Study Area 

 

The study area is located in north of Rio Grande do Sul State, Brazil, City of Ametista do Sul (Figure 

1.1). This region is the largest amethyst producer in the world.  

 

 
 

Figure 1.1: Study Area 

 

The basalt is extracted into the mountain during de mining process and deposited outside, where large 

stacking of rocks is formed (Figure 1.2). These stacks are many times smaller than ASTER pixel size 
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(VNIR - 15 meters and SWIR – 30 meters). Thus, the pixel composition becomes a mixing of 

materials, hampering its identification and mapping.  

 

 
 

Figure 1.2: Photos of Amethyst Mining Residues/Basalt 

 

2. Mapping Methods 

 

2.1. Traditional Method: MaxVer Algorithm  

 

MaxVer or Maximum Likelihood is a statistical classification method that considers the weighting of the 

distances between averages classes values using statistical parameters. To be accurate enough, 

MaxVer needs a number of "pixels" for each training group (more than 30). The training groups define 

the classes scatter diagram and their probability distributions, considering the normal probability 

distribution for each training class [7]. The classification limits are defined from points of same 

classification probability for all classes. This classification method assumes that the user knows 

previously the analyzed area and the distribution of the classes. In this way, when performed the 

classification, selection of training samples can be as efficient as possible [7]. The Equation (1) defines 

the Maximum Likelihood algorithm: 

 

 
 

Where:  

m=Vector of means 

Ʃ= Covariance matrix 

ω= Occurrence probability of each class 

 

This is the traditional method most commonly used to obtain informational classes from remote 

sensing images. The spectral distribution of land use classes is considered to be Gaussian or normal, 

i.e., objects belonging to the same class will present spectral response close to the average values for 

that class. To obtain satisfactory results is necessary to choose a fairly large number of pixels for each 

training sample class, and these present a statistical distribution close to the normal distribution [7]. 

 

Another important factor to effectiveness results is to obtain a reasonably accurate estimate of the 

mean vector and covariance matrix for entire spectral class, which also depends the number of pixels 

included in the training samples [28]. 
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2.2. Spectral Method: Spectral Angle Mapper (SAM) 

 

The spectral classification methods were originally developed for hyperspectral data. The process of 

image acquisition in contiguous bands allows deriving a spectral reflectance curve, named "imaging 

spectroscopy" and "Hyperspectral remote sensing" [29]. The goal of imaging spectroscopy is 

quantitatively measure the spectral signature of the components of the Earth system from calibrated 

spectra, acquired from images, useful in scientific research and remote sensing applications [22]. 

 

This spectral classifications method has provided satisfactory results not only in its application to 

hyperspectral data, but also in data obtained by multispectral sensors like ASTER [27; 11; 8; 22]. 

 

The spectral classification methods can be divided in total pixel detection and sub-pixel scale. The 

total pixel detection is restricted to map the distribution of the material in its percentage prevalence into 

the pixel; otherwise it will not be detected. Examples of these classification techniques: Binary 

Enconding [14]; Tricorder / Tetracorder and its variation Spectral Feature Fitting - SFF [6] and Spectral 

Angle Mapper - SAM [20]. Mapping sub-pixel scale, the feature is not mapped by predominance into 

the pixel, but for its occurrence, even small. It is established, hence, a relative estimation of 

abundance, distribution and occurrence of the target material component, outlining a mixture of 

materials inside each pixel, expressed in their spectral behavior. Examples of techniques associated 

with this concept: Linear Spectral Unmixing - LSU [25] Matched Filtering and Mixture Tuned Matched 

Filtering - MTMF [5; 2; 17]. 

 

The SAM technique [20] allows fast mapping of the similarity between the pixel spectra and the 

reference spectra. The reference spectra can be extracted in laboratory, field or extracted from the 

image. This method assumes that the image data was converted to surface reflectance. The algorithm 

determines the spectral similarity between two spectra calculating the angle formed between them, 

treating them as vectors in a space of dimensionality corresponding to the number of bands (nb) 

(Equation 2).  

 

 
 

Where: 

 = number of spectral bands 

 = reflectance of the pixel spectra 

 = reflectance of the reference spectra 

 

This similarity measured is insensitive to gain factors because the angle between two vectors is 

invariant in relation to the vectors lengths. Laboratory spectra can be directly compared to pixels 

reflectance spectra, which inherently have a gain factor related to unknown illumination effects due to 

topography [20]. As a result, a classified image is created, showing the best fit for each pixel, subject 

to a limit specified by the user. Additionally, “rule” images are provided showing the angular distance 

(in radians) between each spectra image and each reference spectra. The black pixels in the "rule" 

image present low spectral angles values, and therefore more similar to the spectra of end members. 

For best viewing, these images are inverted and the smaller angles appear in a clear tone. 

 

3. Method 

 

In this paper were evaluated two classification techniques: algorithm MaxVer and the SAM technique. 

The reason why were chosen these two techniques is the fact that they have been successfully used 

in other studies of soil and rocks and the possibility to compare different classification approaches: 
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traditional classification methods (MaxVer) versus spectral Methods (SAM). An ASTER image, Level 

1B (Figure 1.3) was used to test and perform the techniques. A total of 16 points of volcanic rocks 

exposition area was collected to check the classification/mapping accuracy (Figure 1.3). 

 

 
 

Figure 1.3: Aster Color Composition R (2), G (3), B (1) with the Amethyst Mining Points Distribution, Collected by 

GPS 

 

3.1. Image Processing 

 

To perform both classifications methods an ASTER Level 1B image was employed. First, the image 

was submitted to crosstalk effect correction through the software Crosstalk [10]. This problem affect 

the dispersion of the incident light in the band 4, which is reflected on the focal plane of SWIR bands, 

producing, for example, appearance of "ghosts" at the interface between land and water surfaces [18]. 

After that, a SWIR bands spatial re-sampling was performed, artificially, increasing its resolution to 15 

m, thus, allowing the composition with VNIR bands in an image database with nine spectral bands. 

This data set were submitted to atmospheric correction through the Atmospheric Moderate Resolution 

Radiance and Transmittance Model (MODTRAN), implemented on the algorithm Fast Line-of-sight 

Atmospheric Analysis of Spectral Hypercube (FLAASH) and converted to apparent reflectance. 

FLAASH is a first-principles atmospheric correction tool that corrects wavelengths in the visible 

through near-infrared and shortwave infrared regions, up to 3 µm [9]. 

 

FLAASH starts from a standard equation for spectral radiance at a sensor pixel, , that applies to the 

solar wavelength range (thermal emission is neglected) and flat, Lambertian materials or their 

equivalents. The equation is as follows: 

 

 
 

Where: 

is the pixel surface reflectance 

 is an average surface reflectance for the pixel and a surrounding region 

 is the spherical albedo of the atmosphere 

 is the radiance back scattered by the atmosphere 
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and  are coefficients that depend on atmospheric and geometric conditions but not on the surface.  

Each of these variables depends on the spectral channel; the wavelength index has been omitted for 

simplicity. The first term in Equation (3) corresponds to radiance that is reflected from the surface and 

travels directly into the sensor, while the second term corresponds to radiance from the surface that is 

scattered by the atmosphere into the sensor. The distinction between  and  accounts for the 

adjacency effect (spatial mixing of radiance among nearby pixels) caused by atmospheric scattering. 

To ignore the adjacency effect correction, set = . However, this correction can result in significant 

reflectance errors at short wavelengths, especially under hazy conditions and when strong contrasts 

occur among the materials in the scene [9]. 

 

The values of , ,  and  are determined from MODTRAN4 calculations that use the viewing and 

solar angles and the mean surface elevation of the measurement, and they assume a certain model 

atmosphere, aerosol type, and visible range. The values of , ,  and  are strongly dependent on 

the water vapor column a27, which is generally not well known and may vary across the scene. To 

account for unknown and variable column water vapor, the MODTRAN4 calculations are looped over a 

series of different column amounts, and then selected wavelength channels of the image are analyzed 

to retrieve estimated amounts for each pixel. Specifically, radiance averages are gathered for two sets 

of channels: an absorption set centered at a water band (typically 1130 nm) and a reference set of 

channels taken from just outside the band. A lookup table for retrieving the water vapor from these 

radiances is constructed [9]. 

 

For images that do not contain bands in the appropriate wavelength positions to support water retrieval 

(for example, Landsat or SPOT), the column water vapor influence is determined by the user-selected 

atmospheric model. After the water retrieval is performed, Equation (3) is solved for the pixel surface 

reflectance in all of the sensor channels. The solution method involves computing a spatially averaged 

radiance image , from which the spatially averaged reflectance  is estimated using the 

approximate equation: 

 

 
 

Spatial averaging is performed using a point-spread function that describes the relative contributions to 

the pixel radiance from points on the ground at different distances from the direct line of sight. For 

accurate results, cloud-containing pixels must be removed prior to averaging. The cloudy pixels are 

found using a combination of brightness, band ratio, and water vapor tests, as described by [23]. 

 

To perform the atmospheric correction in this work, the following image conditions were considered: 

 

a) Elevation of study area (550 m);  

b) Aerosol levels (visibility: 40 km, rural model). In the Initial Visibility field, is used an estimate of 

the scene visibility in kilometers (40 to 100 km for clear conditions; 20 to 30 km for moderate 

haze and 15 km or less for thick haze). Rural model represents aerosols in areas not strongly 

affected by urban or industrial sources. 

c) Atmospheric model (Mid-Latitude Summer). For the best results, must be select a model 

whose standard column water vapor a27 is similar to, or somewhat greater than, that expected 

for the scene.  

 

If no water vapor information is available, the model may be selected based on a seasonal-latitude 

surface described by [9]. 
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After the atmospheric correction, the classification was performed using the MaxVer algorithm. Were 

selected six classes: Soil 1, Soil 2, Native Forest, Agriculture, Basalt and Shadow. The interest classes 

for this work are Shadow, Soils and Basalt. The others were used only to improve the classifier 

accuracy. For each class were selected a number of pixels greater than 30. After the image classified, 

geometric correction was performed to compare with the basalt points collected in field. 

 

The following processes were performed to SAM Technique. Due to the small size of the areas with 

basalt exposition (usually less than one pixel - 15m ASTER), the spectral signature of reference 

(endmember) cannot be extracted in the ASTER image. As Basalt endmember was employed a 

spectral signature from the Jonh Hopkins University Spectral Library, available in: 

http://speclib.jpl.nasa.gov. Before processing the SAM technique, the spectral signature was 

resampled to nine bands ASTER VNIR/SWIR subsystems resolutions (Figure 3.1). A similarity angle 

of 0.05 radians was used to perform the technique. 

 

 
 

Figure 3.1: Reflectance Spectra of Basalt endmember Extracted from Jonh Hopknis University Spectral Library 

and Resampled to ASTER VNIR/SWIR Resolution 

 

4. Results 

 

4.1. MaxVer Processing 

 

The ASTER image was classified into six classes: Soil 1, Soil 2, Native Forest, Agriculture, Basalt and 

Shadow. Figure 4.1 presents the classification results. 
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Figure 4.1: MaxVer Classification Results 

 

The MaxVer algorithm classified correctly fourteen of sixteen basalt points (G02 and G03 not classified 

- blue circles). There is a large occurrence of vegetation closer the mines/basalt, especially native 

forest, hampering the classification. Due to shaded areas in the visible region, is easily confused with 

the basalt. These two points were not classified, presumably because they were located in very small 

mines, where the stacks of basalt are smaller, being strongly influenced by other targets reflectance, 

such as bare soil or shadow. The main problem found with MaxVer algorithm was the mixture 

produced between "shadow" "Soils and "basalt" classes. Several shaded areas were classified as 

“basalt” even when have no occurrence of them. This can be seen in Figure 4.2. In the classification 

result, the “Shadow” class included several pixels classified as basalt (white color). 
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Figure 4.2: Misclassification between “Soils”, "Shadow" and “Basalt” Classes. Shadow Pixels were classified as 

Basalt and Soils 

 

4.2. SAM Processing 

 

The result of SAM technique processing is presented in Figure 4.3 (rule image). The lighter pixels are 

those with greatest similarity with the basalt spectral signature, that is, the clearer, more likely to be a 

pure pixel class. 
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Figure 4.3: SAM Result 

 

The basalt points G1, G2, G3 and G14 did not show similarity with the spectral endmember mainly due 

to the reduced amount of basalt present at these areas, smaller than one pixel (15 m – VNIR, 30 m - 

SWIR). Most of the polygons has pixels with white color saturated indicating the basalt occurrence and 

hence, the mines. The figure also shows other areas identified as basalt that were not mapped by 

GPS, indicating the presence of other mines. 

 

The advantage using this technique over conventional classification techniques is that it has greater 

control over the results. Based on the image "rule", filters can be applied over the pixels with the 

highest probability of belong the study class, whereas in the other classification techniques, the pixels 

are classified according to a range of values, which are similar. 

 

Classification with reference spectra extracted directly from images always tend to have better results 

because factors such as lighting conditions, particles and aerosols, the spectral influence of other 

targets are already associated with the image and consequently the spectral curve. Due to the small 

size of basalt areas (usually less than one pixel at 15m ASTER) spectral signature of reference cannot 

be extracted in the ASTER image because the same had not totally pure pixels. 

 

5. Conclusions 

 

The results showed that ASTER images can be employed for mineral characterization, in the study 

case, the basalt extracted from amethysts mining. 

 

The algorithm MaxVer produced satisfactory results. The main problem was the mixing (error) 

between Shadow, Soils and Basalt classes. 

 

The SAM technique has achieved better results than MaxVer, being able to identify the pixels with 

greater spectral similarity. Even areas where basalt occurrence was small, sometimes lower than one 

pixel, the technique could identify the basalt spectral influence, of course, with a lower similarity value. 

 

The forest native present beside the mines has great influence on the pattern detection process and 

extraction of reference spectra. Therefore, to generate reference spectra that are more pure and 

reliable, large areas should be chosen, where the vegetation and shadow influence are smaller. 
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The low spectral contrast of basalt in VNIR/SWIR region (Figure 3.1) is a factor that influences the 

classifications results. Due to the small intensity of diagnostic features, basalt may by easily mix with 

other classes like shadow and soils. A better approach to study this kind of rock may be employing 

emissivity data on thermal infrared region (8 - 12µm). In this region, the quartz, a mineral that 

compounds basalts rocks, has more intensity spectral features, also known as restrahlen bands, while 

other classes like soils, vegetation and shaded areas tend to behave like a gray body. 
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