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Abstract Knowledge about land use and land cover (LULC) dynamics is of high importance for a 

number of environmental studies including the development of water resources, land degradation and 

food security. Often, available global or regional data sets are used for impact studies, although they 

have not been validated for the area of interest. Validation is especially required if data are used to set 

up a land change model predicting future changes for management purposes. Therefore, three 

different LULC maps of the Mono River Basin in Togo were evaluated in this study. The analyzed 

maps were obtained from three sources: CILSS (2 km resolution), ESA (300 m), and Globeland (30m) 

datasets. Validation was performed using 1,000 reference points in the watershed derived from 

satellite images. The results reveal CILSS as the most accurate data set with a Kappa coefficient of 

68% and an overall accuracy of 83%. CILSS data shows a decrease of savanna and forest whereas 

an increase of cropland over the period 1975 to 2013. The increase of cropland area of 30.97% from 

1975 to 2013 can be related to the increase in population and their food demand, while the losses of 

forest area and the decrease of savanna are further amplified by using wood as energy sources and 

the lack of forest management. The three datasets were used to simulate future LULC changes using 

the Terrset Land Change Modeler. The validation of the model using CILSS data for 2013 showed a 

quality of 50.94%, it is only 40.04% for ESA and 20.13% for Globeland30. CILSS data was utilized to 

simulate the LULC distribution for the years 2020 and 2027 because of its satisfactory performances. 

The results show that a high spatial resolution is not a guarantee of high quality. The results of this 

study can be used for impact studies and to develop management strategies for mitigating negative 

effects of land use and land cover change. 

Keywords Land cover maps; Land cover scenario; Land Change Modeler (LCM); transition probabilities 

 

1. Introduction 

 

Land use and land cover (LULC) change in West Africa is mostly caused by population growth, 

although locally other drivers may be of importance (Atsri et al., 2018). With increasing population 
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demand for food, energy, and water is also increasing (Lambin et al., 2003), which causes land use 

and land cover changes (LULCC). West Africa is a region facing severe LULCC, particularly in the 

Republic of Togo (TG) and the Republic of Benin (BN), which are experiencing an environmental and 

social decline resulting in increasing subsistence farming. This causes an acceleration of the 

degradation of the natural resources and the increase of agricultural area due to rapid population and 

economic growth (Koglo et al., 2018). 

 

Land use refers to "man's activities on land which are directly related to the land,” while land cover is 

"the vegetation and artificial constructions covering the land surface” (Anderson et al., 1976). LULCC 

in West African countries are driven by natural and anthropogenic factors. The anthropogenic factors 

are mainly related to demographic growth (Brink and Eva, 2009), while the natural factors are linked to 

climate variability and climate change (Koubodana, 2015; Oguntunde et al., 2006). LULCC influence 

hydrological processes as agricultural intensification results in increased surface runoff, reduced 

groundwater recharge, and transfer of pollutants (Veldkamp and Lambin, 2001). Knowledge about 

LULC dynamics at the watershed scale is indispensable for water and land resource management 

(Eisfelder et al., 2012; Wisser et al., 2010). 

 

LULC products from remote sensing are often the input for environmental modeling and analysis. This 

is the case in hydrologic modeling and trend analysis (Wisser et al., 2010), biomass and energy 

modeling (Eisfelder et al., 2012), population density modeling (Sutton, 1997) as well as risk and 

hazard analysis (Herbst et al., 2006; Mishra et al., 2014). 

 

In many studies, LULC assessment has been performed with data available from the U.S Geological 

Survey (USGS). These products are developed on a large, often global scale and applying them to the 

local scale without any validation can significantly affect the model results and future scenario 

development (Pontius and Neeti, 2010; Sun and Robinson, 2018). In the present study, the impact of 

the LULC data sets accuracy on future scenarios in the Mono River Basin (MRB) was investigated. 

 

For LULCC analysis and future scenario prediction, a number of models have been developed like the 

GEOMOD, the Cellular Automata (CA) and STCHOICE (Arsanjani et al., 2013) and applied in a 

number of studies (Herbst et al., 2006; Mishra et al., 2014). A comparison of four statistical 

approaches of these models (Markov chain, logistic regression, generalized additive models, and 

survival analysis) was done by Sun and Robinson (2018) to detect their ability to quantify LULC 

changes and to perform prediction. The results show that the generalized additive model performs 

better for overall accuracy and is best for LULC validation and modeling. For example, Pontius and 

Neeti (2010); Pontius and Spencer. (2005) analyzed the uncertainty of future LULC scenarios and 

discussed techniques to quantify the meaningful differences between future scenarios using the 

GEOMOD model. However, each land cover modeling approach was developed with different 

strengths, weaknesses, and applications (Mas et al., 2014). A number of studies on LULCC used 

computation of transition potentials, the spatial trend change analysis and land cover change 

prediction using the Land Change Modeler (LCM), a tool in the TerrSet Geospatial Monitoring and 

Modeling System integrated in the IDRISI software (Du et al., 2012; Eastman, 2006). This LCM 

software provides a robust set of tools for change analysis and spatial trend analysis utilizing different 

variables as drivers for future scenarios computation (Eastman, 2006; Mishra and Singh, 2010). 

Generally, LULC data are required for the analysis of the past, but also for developing LULC scenarios 

(Rounsevell et al., 2006). Thus, validated data are used to analyze the drivers of change in the past 

and to project them for the future (Pontius et al., 2001). 

 

The methodology described by Olofsson et al. (2013); Pontius and Malanson (2014) to detect or to 

compare LULCC often used in the generation of LULC maps can also be applied for evaluating the 

results of different scenarios. Peixoto et al. (2006); Stehman. (2009) have described the method of 

spatial accuracy assessment by sampling approach and have proposed this method as appropriate for 

land cover accuracy assessment. The analysis of Pontius and Millones (2011) discussed the 
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limitations of comparing two maps using the Kappa coefficient and proposed a new methodology for 

comparison namely “quantify disagreement and allocation disagreement”. Nevertheless, the Kappa 
coefficient is still considered as a vital tool for accuracy assessment measurement in a number of 

studies (Biondini and Kandus, 2006; Milad et al., 2017; Ren et al., 2018; Sitthi et al., 2016). 

 

This study analyzes LULCC in the MRB from 1975 to 2013 using different data sources and simulates 

potential future LULC distributions. The main objective of this study is therefore to assess the accuracy 

of past and future land cover changes in the MRB using different data sets. The specifics objectives 

are: (i) to analyze the past LULCC in the MRB using three different data products, (ii) to project future 

LULC considering population growth as the main driver and (iii) to determine how the choice of the 

data set will influence projected future LULC accuracy. 

 

2. Materials and Methods 

 

2.1. Study area 

 

The study area is the Mono River Basin (MRB) in West Africa. The study area was selected for LULCC 

change analysis because of huge environmental problems like flooding downstream of the Nangbéto 

dam, soil erosion and dam-siltation caused by agricultural intensification, and cutting of trees, all 

exacerbated by the non-existence of any cooperative communal structure and reduced livelihood 

opportunities (SAWES, 2011). The MRB is the second largest river in Togo, and shared with the 

Republic of Benin. The basin is located between 06°16’ and 9°20’North latitude and 0° 42’and 1° 40' 

East longitude (Figure 1). At the outlet at Athiémé, the basin covers an area of 22,014 km
2
 with 88% of 

its area in Togo and the 12% in Benin (PCCP, 2008). The MRB is 309 km long, has its source in the 

Alédjo Mountains (Amoussou, 2010) in the north of Benin and drains into the Atlantic Ocean via ”la 

bouche du roi”. The elevation of the basin ranges from 12 to 948 meters (http://srtm.csi.cgiar.org/). The 

biggest dam on the river is at Nangbéto and produces 20% of the total hydroelectricity used by Togo 

and Benin. 

 

The watershed area encompasses two climate zones. In the south, from 6° to 8°N, two rainy seasons 

and two dry seasons exist with rainfall between 1200 and 1500 mm/year in the mountainous area of 

the southwest and 800 to 1000 mm/year in the coastal zone. 

 

The natural vegetation is mainly savanna and is composed of the bush and tree savanna, gallery 

forests, and grassland. The relief is generally flat, except for the mountainous regions of the West and 

the Northwest. In the lower part of the basin, there are very narrow coastal sedimentary island, often 

covered by alluvial deposits. 

 

In 2011, the MRB was populated by about  5.1 million inhabitants (FAO, 2012; PCCP, 2008; SAWES, 

2011). The main socioeconomic activities are agriculture, trade, fisheries and livestock husbandry 

(Amoussou, 2010).  According to FAO (http://worldpopulationreview.com/countries/togo- population), 

the population in Togo has tripled since 1975 and is still increasing (Table 1). 

 

Table 1: Past and future scenarios of population (millions of inhabitants) in Togo from 1975 to 2050 

 

Year (T) 1975 2000 2010 2015 2020 2025 2030 2035 2040 2045 2050 

Population (P) 2.40 4.90 6.50 7.40 8.34 9.41 10.5 11.66 12.86 14.08 15.29 

Growth rate (K) - 2.86 2.83 2.59 2.39 2.41 2.19 2.10 1.96 1.80 1.66 

Source: World Population, 2018 (http://worldpopulationreview.com/) 

 

Where K (%) is growth rate estimated from reported population data assuming exponential growth as 

given in Eq. (1):  

http://worldpopulationreview.com/


IJARSG– An Open Access Journal (ISSN 2320 – 0243)  

 

International Journal of Advanced Remote Sensing and GIS 3076 

 

 
and P is the population value at time 𝑡 + ∆𝑡, 𝑃0 is the initial population value at 𝑡0. 

 

 
 

Figure 1: Location of the Mono River basin in Togo and Benin 

 

2.2. Data Description 

 

Land use and land cover: In this study, we used three available sources of LULC data for the MRB 

comprising different temporal and spatial resolutions: the Permanent Interstate Committee for drought 

control in Sahel (CILSS) (CILSS, 2016) data set developed for West Africa at 2-km spatial resolution, a 

global map at 300-m resolution offered by the European Space Agency (ESA) in the frame of the 

project on Climate Change Initiatives (CCI) (Gessner et al., 2012), and the global Globeland30 project 

land cover map developed by the National Geomatics Center of China (NGCC) with a resolution of 30-

m (Eastman, 2006; Mishra and Singh, 2010). The details of the data sets are provided in Table 2. 

 

 

 

 

 

 

 

(1) 
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Table 2: Land cover datasets description 

 

Datasets CILSS ESA Globeland30 

Spatial resolution 2 km 300 m 30 m 

Data available periods 1975, 2000, and 2013 1992 to 2015 2000 and 2010 

Coverage West Africa Worldwide Worldwide 

Input’s images for 

classification 

Google Earth, Landsat, 

Corona and MODIS 

300 m MERIS, 1km 

SPOT-vegetation, 1km 

PROBA-V and 1km AVHRR 

 

Landsat TM and ETM+ 

Classification type Automated and semi- 

automated 

Automated Pixel-Object-Knowledge (POK) 

Number of LULC type 22 22 10 

Website for data 

availability 

https://eros.usgs.gov/ west 

Africa/data 

http://maps.elie.ucl.ac.b 

e/CCI/viewer/index.php 

http://www.globallandcov 

er.com/ 

 

2.3. Data Processing and Methods 

 

2.3.1. Pre-analysis and Harmonization of Land Use and Land Cover Type 

 

After extracting the Mono watershed in CILSS, ESA, and Globeland30 datasets, a maximum of ten 

LULC types are represented (Table 3). The pre-analysis consists first of reclassifying the ten land 

cover types into six major LULC types using ArcGIS 10.5 tools. Second, the spatial resolution of the 

CILSS and ESA maps was resampled to the 30-m resolution of Globeland30 (Thibaut et al., 2011) to 

be able to superimpose the maps for comparison (Bárdossy and Schmidt, 2009). 

 

Table 3: LULC categories in the MRB after extraction and reclassification scheme 

 

No. Extracted LULC Description 
LULC 

reclassified 

1 Forest 
Forests and woody vegetation land (> 75% trees/ha), dense, closed 

canopy formation of evergreen 

Forest 

2 
Gallery forest and 

riparian 

Corridor of dense permanent vegetation, forest bordering the edges of 

streams and rivers 

3 Degraded forest 
Immature forest, or forest in various stages of regrowth after 

disturbance 

4 Woodland 
Open formations of small to medium height trees, tree cover generally 

between 50%- 75% 

5 Savanna 
Land with trees (< 75% trees/ha) with mixture of shrub and grass 

undergrowth, with some dominance of grass or shrub 
Savanna 

6 
Wetland and 

floodplain 
Permanent wetlands and swamps Wetland 

7 Agriculture Cultivated areas with seasonal crops dependent on rainfall. 
Cropland 

8 Cropland and oil palm Crop field and fallow land, farms with crops and harvested croplands 

9 Water Rivers, open water, inland waters and small reservoirs Water 

10 Settlements Cities and villages, roads, and other buildings Settlements 

 

The six LULC classes in Table 3 are similar to those proposed by Penman et al. (2003) in the IPCC 

Guidelines according to the Kyoto Protocol of 2001 and the Good Practices Guidelines for Land Use, 

Land Use Change and Forestry (GPG-LULUCF). 

 

2.3.2. Accuracy assessment, land use/cover area, and change analysis 

 

According to Sitthi et al. (2016), a LULC accuracy assessment is required in any study using remote 

sensing data. LULC map accuracy is quantified by creating an error matrix or a confusion matrix, 

https://eros.usgs.gov/%20west%20Africa/data
https://eros.usgs.gov/%20west%20Africa/data
http://maps.elie.ucl.ac.b/
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which compares the classified map with a reference classification or a true map. These matrices can 

be used as a measure of agreement between model algorithm predictions and the references points 

(Congalton, 1991). Following the guidelines of the Food and Agriculture Organization (FAO), the tables 

of accuracy estimates were produced for each of the three data sets. This was followed by confidence 

intervals for area estimation and comparison of area estimation derived from map data to reference 

data (FAO-ONU, 2016). Many past studies have estimated the accuracy of the observed LULC map 

with a modeled one using a Kappa coefficient and overall accuracies (Chen et al., 2015; Franklin and 

Wulder, 2002; Lunetta et al., 2006; Ren et al., 2018). 

 

Table 4: Number of reference points for each land cover class for 2010 and 2013 

 

Number of land cover reference points 

Land cover type Forest Savanna Wetland Cropland Water Settlements Total 

Year 2013 23 665 10 289 8 5 1,000 

Year 2010 140 527 17 286 13 17 1,000 

 

For accuracy assessment, 1,000 reference points were randomly taken from high-resolution (in meter) 

satellite images for the years 2010 and 2013 provided by Google Earth Pro (version 7.3). These 

reference points were distributed proportionally to the size of the six LULC types inside MRB and 

compared with a 30-m spatial resolution classified map (Table 4). 

 

The accuracy assessment and an error matrix for each category of dataset were generated by 

following the guidelines of Congalton (1991); Huth et al. (2012) and the method proposed and 
described by Olofsson et al. (2013). According to this method, an error matrix can be computed by 

accounting LULC number of pixels. In addition, from this error matrix statistics such as user and 

producer accuracies are generated for individual LULC category of the data sets, then the overall 

accuracy and Kappa coefficient are computed from this error matrix (Pij) for each data set. 

 

User’s accuracy (Ȗl) of class i is the ratio of the correct mapped pixels of a particular class i by the row 

total pixels (Pi+) Eq. (2). 
 

           
 

Producer’s accuracy (Pj) of class j is the ratio of the number of correctly classified pixels to class j in 

the data to be evaluated and is estimated by Eq. (3) 
 

 

 

The overall accuracy (Ô) indicates the overall proportion of area correctly classified (Pii). It is the sum 

of all pixels on the major diagonal in the adjusted error matrix over the total number of pixels in the 

error matrix (N) as in Eq. (4). 
 

 
 

The Kappa coefficient (K) is computed based on the error matrix and is the value that shows the 

consistency of data classification. This value is used to evaluate the accuracy of remote sensing data 

as following Eq. (5) (Amler et al., 2015; Ren et al., 2018; Sitthi et al., 2016). 
 

(2) 

(3) 

(4) 
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According to, Fitzgerald and Lees (1994), K is considered to be statistically significant at p<0.001 at a 

level of confidence for the following intervals values:  

 Poor if K <40  

 Good if 40 ≤ K <75 

 Excellent if K ≥ 75 

 

2.3.3. Land use and land cover change scenarios 

 

Developing future LULC scenarios consists of two steps. In the first step, the rate of change has to be 

estimated, and in the second step the probability for a change into a certain LULC class to take place 

has to be computed (Verburg and Veldkamp, 2002). The flowchart of Mono land use and land cover 

modeling is shown in Figure 2. 

 

The spatial trend change analysis was performed for CILSS (1975-2000) and for the periods, 2000-

2010 and 2000-2013 (CILSS, ESA and Globeland30). Spatial trends per LULC category were 

computed as 9th order polynomial and presents positive, no and negative trend area of change 

(Eastman, 2006; Václavík and Rogan, 2009). 

 

The results are used to compute spatial transition probabilities for every LULC category. In this study, 

population growth, elevation, and distance to roads were used as drivers for calculating the transitions 

from forest to savanna, from forest to cropland, from savanna to cropland, and from savanna to forest. 

Road network and elevation are static drivers while population is a dynamic driver. 

 

 
 

Figure 2: MRB flowchart for land cover modeling (LC = Land use/cover) 

 

These transition probabilities are based on a Multi-Layer Perceptron (MLP) neural network (Eastman, 

2006). The parameters which are the driving forces of change are assumed to be the same (Eastman, 

2006). Many studies have shown that MLP is useful and a good tool for prediction, function 

approximation and classification (Gardner and Dorling, 1998). We adopted a Markov Chain prediction 

process and a transition probability to model the future LULC scenarios (Eastman, 2006). The 

transition probability file is a matrix that records the probability that each LULC category will change to 

any other category. The quality of the prediction can be evaluated using an observed map not used for 

(5) 
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calculating the transition potentials (Eastman, 2006). Computing the rate of change between 1975 and 

2000 and comparing the projected LULC of 2013 with the observed one allows validation of CILSS 

datasets. Afterwards, the prediction of LULC scenarios of CILSS and ESA at a time step of seven 

years from 2013 to 2027 and for Globeland30 at the step of ten year from 2010 to 2020 was 

performed. 

 

3. Results 

 

3.1. Accuracy assessment of land use and land cover 

 

The assessment of accuracy of LULC maps was done using the latest available LULC maps of the 

years 2010 (Globeland30) and 2013 (CILSS and ESA). The percentage of reference points estimated 

correctly, known as overall accuracy and the Kappa coefficient, were 83% and 68% for CILSS in 2013 

product, 69% and 36% using the ESA 2013 data set, and 57%, and 34% using the Globeland30 data 

set, respectively. The Kappa coefficient from CILSS is considered good but is poor for the ESA and 

Globeland30 data sets (Chen et al., 2004; Fitzgerald et Lees, 1994). The overall accuracy of CILSS is 

excellent, good for the ESA and Globeland30 data sets. Detailed producer and user accuracy 

computed is shown in Table 5. 

 

Table 5: User and producer accuracy values of each land use and land cover type 

 

 CILSS 2013 ESA 2013 Globeland30 2010 

User Producer User Producer User Producer 

Land cover type Accuracy [%] 

Forest 62.90 95.70 3.90 8.70 37.00 52.90 

Savanna 98.30 76.50 78.60 81.10 69.80 55.20 

Wetland 81.80 90.00 7.60 50.00 0.00 0.00 

Cropland 65.80 95.80 70.80 45.30 56.50 66.80 

Water 63.60 97.50 100.00 87.50 88.90 61.50 

Settlements 100.00 80.00 80.00 80.00 66.70 11.80 

 

According to Table 5, CILSS dataset shows acceptable results of user and producer accuracies higher 

than 60%. User and producer accuracies resulting from ESA for forest and wetland are very poor 

especially for wetland and settlements in Globeland30 data set. Particularly for the LULC categories of 

forest, savanna, cropland, and water, the accuracies are acceptable with ESA and Globeland30 data 

sets. In the three data sets, user and producer accuracies for savanna and water are acceptable while 

forest is good in the CILSS and Globeland30 datasets. We can conclude that globally the 

reclassification consistence is best from CILSS, ESA to Globeland30 data sets in MRB, whereas some 

individual LULC type have a best user and producer accuracies according to the data set. 

 

3.2. Land cover area and change area estimation 

 

The analysis of the CILSS data sets LULC type area reveals savanna, cropland and forest as the 

dominant land cover in the basin (Figure 3). In terms of area percentage coverage, savanna was 

75.94% in 1975, 63.75% in 2000 and 50.35% in 2013; cropland was 84.00% in 1975, 25.36% in 2000, 

and 39.82% in 2013; and forest was 14.87 % in 1975, 9.57% in 2000 and 7.96% in 2013 as shown in 

Table 6. 

 

LULC change area of savanna and forest decreased whereas settlements and cropland increase 

between 1975 and 2013 for CILSS data set. 

 

The results are seen to be different for the ESA data set and some were contrary to the CILSS data 

set. The savanna, surface area was 70.52% in 2000 and 70.70% in 2013. The area of cropland was 

20.66% in 2000 and 20.91% in 2013. The forest area decreased from 8.02% in 2000 to 7.51% in 2013. 
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This means there is an increase of savanna and a reduction of cropland over time. From our 

knowledge in the field, deforestation is still occurring, resulting in increasing cropland area in the MRB. 

Table 6 shows that forest decreases at 0.51% from 2000 to 2013 and an increase of savanna from 

2000 to 2013 for the ESA dataset. However, the major LULC types in the ESA map are still savanna, 

cropland and forest, but the change between 2000 and 2013 is positive for savanna, negative for 

forest, and positive for cropland. Considering the user and the overall accuracy by types (Table 5), it is 

clear that forest and wetland are not well classified in the ESA data sets (Figure 3 & Table 6). 

 

 
 

Figure 3: CILSS (upper), ESA (middle) and Globeland30 (bottom) LULC maps 
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The Globeland30 maps for 2000 and 2010 are shown in Figure 3. Forest area was 23.65% in 2000 

and 23.96% in 2010. For savanna, it was 44.51% in 2000 and 39.39% in 2010 while cropland was 

30.69% in 2000 and 33.68% in 2010. Based on these results, there was an increase of 0.32% area of 

forest and 3.19% of cropland and a decrease of savanna area of 4.52%. 

 

Table 6: Land use and land cover area and area change of CILSS, ESA and Globeland30 (GLC) 

 

 Land cover type area [%] Land cover type area change [%] 

Year 1975 2000 2010 2013 1975- 

2000 

2000-2013 2000- 

2010 

1975- 

2013 

Sources CILS S CILS S ESA GLC GLC CILS S ESA CILS S CIL 

SS 

ESA GLC CILS S 

Forest 14.87 9.57 8.02 23.65 23.96 7.96 7.51 -5.31 - 1.61 - 0.51 0.32 -6.91 

Savanna 75.94 63.75 70.52 44.51 39.99 50.35 70.70 -12.19 -13.40 0.18 - 4.52 -25.59 

Wetland 0.02 0.33 0.05 0.01 1.00 0.16 0.06 0.31 -0.16 0.02 0.99 0.14 

Cropland 8.84 25.36 20.66 30.69 33.88 39.82 20.90 16.51 14.50 0.25 3.19 30.97 

Water 0.02 0.51 0.68 0.68 0.67 0.49 0.63 0.49 -0.02 -0.06 -0.01 0.47 

Settlements 0.31 0.49 0.07 0.48 0.50 1.22 0.19 0.18 0.73 0.12 0.02 0.91 

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00 0.00 0.00 0.00 0.00 

 

3.3. Land use and land cover data modeling using the Land Change Modeler  

 

3.2.1. Land cover spatial trend of change 

 

The spatial trend of change computed for the CILSS, ESA and Globeland30 data sets is given in 

Appendix A. CILSS data show a spatial trend between the major LULC during the period of 2000 to 

2013 from forest to savanna in the southwest of the basin. The trend in change of forest is more 

intensive in the southwest and the northeast. These are the locations of the cities of Sokodé, Blitta, 

Anié and Atakpamé and the road networks as shown in Figure 1. The trend of change from savanna to 

cropland is high in the center of the basin, where 16.51% of the total area become cropland between 

1975 and 2000, 14.46% between 2000 and 2013 and therefore 30.97% from 1975 to 2013 (Table 6). 

There are some similarities of the spatial trend of the transition forest to savanna between 2000 and 

2013 using CILSS and ESA data sets and between 2000-2013 and 2000-2010 using the three data 

sets for the transition of savanna to cropland (Appendix A). 

 

3.2.2. Quantifications, locations of land use/cover change and driving forces 

 

Land use and land cover modeling requires knowledge about how much change occurs in the land, 

where it happened and why. Therefore, quantification of historical LULCC allows knowing the past 

state of LULC. Additionally, drivers involving change are useful for future land projection. 

 

Table 7: Changes in land use and land cover in the MRB for the three different data sets 

 

Areal changes [km
2
] 2000 to 2013 2000 to 2010 

CILSS ESA Globeland30 

Forest to Savanna 108 72 76.5 

Savanna to cropland 252 13.5 9 

Water to wetland 36 27 28.8 

Forest to cropland 54 180 25 

Total change area 450 292.5 139.3 

 

Table 7 shows the main changes in LULC in the study area as derived from CILSS, ESA, and 

Globeland30 and deduced from LCM analysis. The largest changes are savanna to cropland (252 

km
2
), forest to savanna (108 km

2
), and forest to cropland (54 km

2
) using the CILSS data set. The 

LULCC using ESA and Globeland30 is underestimated compared to CILSS. The LULCC can be 
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explained by the population growth in the region as from 2000 to 2015, the population in Togo 

increases from 4.90 to 7.40 million (Table 1). 

 

The hot spot of the change of forest to savanna is located in the southwest of the basin, while forest to 

cropland change is also important in the northeast. Changes of savanna to cropland are occurring over 

the entire basin but densely centered in the basin and from the south to the north. The change from 

forest to savanna with CILLS datasets is located in the south and west of the basin where the rural 

population likely has access to wood for their domestic needs. 

 

3.2.3. Land use and land cover validation and change predictions 

 

Because of limited data available of the year 1975 of ESA and Globeland30, validation was performed 

only for the CILSS data set. For that, after assessing LULCC between 1975 and 2000 a LULC map 

was generated for the year 2013 using the LCM. The estimated map was compared with the observed 

LULC map. The results of the validation were ranked as acceptable with an accuracy rate higher than 

50% (Appendix B). 

 

After analyzing LULC, future LULC was predicted for all data sets by supposing population growth as 

the main driver. 

 

 
 

 Land use and land cover area [%] Change area [%] 

Land cover type 2020 2027 2020-2027 

Forest 7.56 7.11 -0.45 

Savannah 45.13 39.49 -5.64 

Wetland 0.07 0.07 0.00 

Copland 45.72 50.98 5.26 
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Water 0.47 0.47 0.00 

Settlements 1.05 1.88 0.83 

Total 100.00 100.00 0.00 

 

Figure 4: Projected land use and land cover scenarios and areal changes for 2020 and 2027 with CILSS dataset 

 

The predicted LULC scenarios for 2020 and 2027 using the CILSS data sets are shown in Figure 4 

together with the related statistics. According to this projection, forest and savanna LULC decrease 

with a change rate of 0.45% for forest and for savanna of 5.64%. By contrast, cropland is constantly 

increasing with a rate of 5.26% and settlements are increasing at 0.83% between 2020 and 2027. 

Wetland and water bodies in the area did not change significantly. 

 

Because of weak representation of LULC using ESA and Globeland30 confirmed by the prediction 

accuracy of less than 50% (Appendix B), the projection was performed only for the year 2020. In 

Figure 5, CILSS, ESA, and Globeland30, LULC scenarios of 2020 are shown. The projected LULC 

map of 2020 is almost similar to the earlier LULC map from 2013 and 2010 for ESA and Globeland30, 

respectively (Figure 2). These similarities can be explained by the low prediction accuracies. 

 

 
 

Predicted land use and land cover in 2020 area [% ] 

Data sets Forest Savanna Wetland Cropland Water Settlements 

CILSS 7.56 45.13 0.07 45.72 0.47 1.05 

ESA 7.61 70.30 0.07 21.19 0.64 0.20 

Globeland30 23.96 39.99 1.00 33.88 0.67 0.50 

 

Figure 5: Comparison of the projected land cover maps and areal changes for 2020 the CILSS, ESA and 

Gloeland30 data sets 

 

The predicted LULC maps in 2020 depend strongly on the accuracy of each LULC source. Results 

show that the temporal change of LULC in the basin is best reproduced by CILSS. Beyond the CILSS 

data set, Globeland30 data performs better concerning the spatial representation of some LULC such 

as forest, savanna, cropland and water LULC types. 

 

Savanna, cropland, and forest are the dominant LULC types in the region. From 1975 to 2027, there is 

a decrease of forest and savanna followed by an increase of cropland and settlements in the MRB. 
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4. Discussion 

 

4.1. Accuracy assessment and past land cover change 

 

Although the spatial resolution of the ESA and the Globeland30 data is high, the two data sets do not 

accurately map some LULC types in the study area, which may be explained by the fact that for CILSS 

local information are used during the automated and semi-automated classification (CILSS, 2016; 

Cotillon, 2017). It may be also due to the number of reference points spatial repartition used for the 

accuracy assessment. Indeed, the selected random points size from Google earth imagery can affect 

the spatial distribution depending on the resolution of 2-km, 300-m or 30-m (Congalton, 1991; 

Stehman, 2009). The visual identification of land use or land cover classes is easy when the resolution 

is high (Huang and Siegert, 2006; Stuckens et al., 2000). 

 

Table 5 shows the difference of user and producer accuracies from CILSS ESA and Globeland30 

dataset. CILSS dataset reveals acceptable accuracies of each LULC category. This difference can be 

explained by the data set spatial resolution and references points. 

 

The finding that savanna and agriculture are the dominant LULC classes in the study area during the 

study period is in accordance with other studies. For example, Badjana (2015) analyzed LULCC in the 

Kara River basin, and showed that savanna was dominant. This was also observed by Diwediga et al. 

(2015) in the Mo River basin, a small tributary of Oti river in central region of Togo. It was also 

concluded by Koglo et al. (2018) that savanna and forest are the most important LULC type that are 

being converted by cropland in Kloto, a small district in the south of the MRB. 

 

The results of CILSS LULCC in MRB confirm many analyses performed in Togo and Benin about 

LULCC mainly caused by deforestation, cropland expansion, and losses of savanna (Akinyemi et al., 

2017; Kleemann et al., 2017). The results of Badjana et al. (2017); Koglo et al. (2018) revealed that 

deforestation and savanna changed to cropland and settlements in south and north of Togo. In Fazao-

Malfacassa National Park, in the northern part of the MRB, Atsri et al. (2018) found that forest and 

savanna are degraded, which could be explained by agriculture expansion, bush fire, timber extraction 

and linked by population growth. By assessing the land use change process in the Kéran protected 

area in the northern Togo, Polo-Polo-akpisso et al. (2019) confirmed that savanna and forest have 

decreased annually at the rate of more than 2%, whereas cropland and settlements have increased in 

the region. 

 

The results of the current study show that deforestation is increasing over the whole period of analysis. 

According to Kokou et al. (2005) more than 80% of the rural communities in Togo are using wood for 

cooking, causing significant losses of forest. Therefore, decision makers need to take measures to 

reduce forest degradation, sensitizing the local communities concerning the advantages of 

reforestation, and the negative impacts on the climate due to losses of forests. Measures must be also 

taken concerning demographic policies. 

 

The increase of the water bodies between 1975 and 2000, can be explained by the building of the 

Nangbéto dam in 1987 and rainfall variability in this region (Badjana, 2015). As the consequences of 

climate change and climate variability, reduced precipitation causes a decrease of the water body of 

the reservoir from 2000 to 2013, which had consequences for hydroelectricity production as mentioned 

by Houessou (2016). Climate variability, especially the droughts between 1970s and 1980s, negatively 

affected grassland due to overgrazing. The increase of settlements is also realistic and can be 

explained by demography in Togo and Benin (see Table 1). 

 

4.2. Land use and land cover scenarios accuracy and assessment 
 

LULC spatial trend direction and location are approximately situated in the locations of the main cities 

of the basin; therefore, LULC spatial trend can be explained by population activities and growth as 
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mentioned by Koglo et al. (2018) in the south district of MRB. Because of its fine resolution, the 

Nangbéto dam area and some protected forests such as Malafacassa (Amoussou et al., 2017; Atsri et 

al., 2018) are well delimited. The excellent reclassification of these land cover is due to low and high 

albedo factor of water and forest which plays a role during data collection by satellite’s sensors. CILSS 

LULC scenarios shows positive area change of cropland and settlements; negative area change of 

forest and savanna can be explained by the same factors cited above. 

 

Difference between future LULC scenarios of the data sets is due to the poor and better Kappa 

coefficients obtained, which prove the importance of LULC validation. Therefore validation or LULC 

based on supervised classification are preferable as an input in LULCC scenario studies (Foody, 

2002). 

 

LULC scenarios accuracy rate are strongly impacted by the accuracy assessment and LULCC of 

historical CILSS, ESA and Globeland30 data sets. Furthermore, the low accuracies obtained from the 

modeling can also be explained by the fact that we were not able to take into account all the drivers as 

well anthropogenic and natural during the modeling. Others reason are the weakness of LCM software 

or user manipulation errors (Camacho Olmedo et al., 2015; Mas et al., 2014). The simulation can allow 

understanding, forecasting, and anticipating the future evolution of environment coverage. 

Nevertheless it is important to know the validity of LCM outputs based on local expertise (Zoungrana 

et al., 2015). 

 

5. Conclusion 

 

This work focused on land use and land cover changes assessment and future scenarios in the Mono 

river basin (MRB) over the period 1975 to 2027 using three different data sets. The results show that 

the CILSS data set is the most reliable for the MRB with acceptable accuracy assessment efficiencies 

(higher than 75%). In the MRB, savanna, cropland, and forest are the major land use and land cover 

classes with decreasing (forest and savanna) and increasing (cropland, settlement) trends. The 

expansion of agriculture due to population growth occurs at the expense of savanna. In the tropical 

zone of West Africa, people use wood as an energy source, another cause of deforestation. LULCC 

must be taken seriously by the authorities and population themselves. It is very important to know the 

evolution of LULCC in order to develop strategies for planning of an integral water resources 

management (IWRM) in general. 

 

The study assessed scenarios of future LULC by mapping and analyzing the situation for two time 

steps (2020 and 2027). The maps obtained from this analysis can be used as inputs in hydrological 

modeling for assessing the impacts of LULC and climate changes on water yield and surface runoff of 

in MRB. 

 

Future scenarios of LULC depend significantly on the source of the underlying data set. The high 

spatial resolutions of Globeland (30 m) and ESA (300 m) are attractive, but the quality is limited to 

specific land use or land cover categories. The resolution of CILSS is rather coarse and therefore, 

users often prefer other data sets. Nevertheless, because CILSS data were produced with local 

knowledge, the quality is convincing and outperforms the others. Using the data sets for scenario 

analysis results in completely diverging futures; this may significantly affect management strategies. 

This study shows the importance of validating land cover data sets before scenario analysis. 
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Appendix A: Spatial trend map of land cover changes 
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Negative values represent a reverse spatial development for the analyzed trend, whereas increasing 

positive numbers characterize an increasing intensity for the analyzed trend. 
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Appendix B: Land Cover Modeler MLP parameters and performance for explaining the change in 

LULC for CILSS and ESA 2000-2013 as well as for Globeland30 2000-2010/ RMSE: Root Mean 

Squared Error 

 

 CILSS ESA Globeland30 

Input layer neurons 2 2 2 

Hidden layer neurons 3 2 3 

Output layer neurons 6 5 5 

Requested samples per class 10,000 10,000 10,000 

Final learning rate 0.0001 0.0001 0.0005 

Momentum factor 0.50 0.50 0.50 

Sigmoid constant 1.00 1.00 1.00 

Acceptable RMSE 0.01 0.01 0.01 

Iterations 10,00 10,00 10,00 

Training RMSE 0.29 0.35 0.40 

Testing RMSE 0.29 0.35 0.40 

Accuracy rate 50.94% 40.04% 20.13% 

Skill measure 0.41 0.24 0.0017 

 


