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Abstract Air temperature (Tair or T2m) is an important climatological variable for forest biosphere 

processes and climate change research. Due to the low density and the uneven distribution of weather 

stations, traditional ground-based observations cannot accurately capture the spatial distribution of Tair. 

In this study, Tair in Berlin is estimated during the day and night time over six land cover/land use 

(LC/LU) types by satellite remote sensing data over a large domain and a relatively long period (7 

years). Aqua and Terra MODIS (Moderate Resolution Imaging Spectroradiometer) data and 

meteorological data for the period from 2007 to 2013 were collected to estimate Tair. Twelve 

environmental variables (land surface temperature (LST), normalized difference vegetation index 

(NDVI), Julian day, latitude, longitude, Emissivity31, Emissivity32, altitude, albedo, wind speed, wind 

direction and air pressure) were selected as predictors. Moreover, a comparison between LST from 

MODIS Terra and Aqua with daytime and night time air temperatures (Tday, Tnight) was done 

respectively and in addition, the spatial variability of LST and Tair relationship by applying a varying 

window size on the MODIS LST grid was examined. An analysis of the relationship between the 

observed Tair and the spatially averaged remotely sensed LST, indicated that 3 × 3 and 1 × 1 pixel size 

was the optimal window size for the statistical model estimating Tair from MODIS data during the day 

and night time, respectively. Three supervised learning methods (Adaptive Neuro Fuzzy Inference 

system (ANFIS), Artificial Neural Network (ANN) and Support vector machine (SVR)) were used to 

estimate Tair during the day and night time, and their performances were validated by cross-validation 

for each LC/LU. Moreover, tuning the hyper parameters of some models like SVR and ANN were 

investigated. For tuning the hyper parameters of SVR, Simulated Annealing (SA) was applied (SA-

SVR model) and a multiple-layer feed-forward (MLF) neural networks with three layers and different 

nodes in hidden layers are used with Levenber-Marquardt back-propagation (LM-BP), in order to 

achieve higher accuracy in the estimation of Tair. Results indicated that the ANN model achieved better 

accuracy (RMSE= 2.16°C, MAE = 1.69°C, R
2
 = 0.95) than SA_SVR model (RMSE= 2.50°C, MAE = 

1.92°C, R
2
 = 0.91) and ANFIS model (RMSE= 2.88°C, MAE= 2.2°C, R

2
 = 0.89) over six LC/LU during 

the day and night time. The Q-Q diagram of SA-SVR, ANFIS and NN show that all three models 

slightly tended to underestimate and overestimate the extreme and low temperatures for all LC/LU 

classes during the day and night time. The weak performance in the extreme and low temperatures 

are a consequence of the small number of data in these temperatures. These satisfactory results 

indicate that this approach is proper for estimating air temperature and spatial window size is an 

important factor that should be considered in the estimation of air temperature. 
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1. Introduction 

 

The standard meteorological Tair is measured in a shelter at 2m height (Brunel, 1989; Jin and 

Dickinson, 2010). It is an important indicator of terrestrial environmental conditions across the earth 

(Prihodko and Goward (1997); Peón et al., 2014) and one of the most widely used climatic variables in 

global change studies. It plays an important role in multiple biological and physical processes among 

the hydrosphere, atmosphere and biosphere (Stisen et al., 2007; Shamir et al., 2014; Benali et al., 

2012). Regarding ecosystem, it influences the distribution of plant species (Cabrera 2002) and affects 

the dynamics of the soil-plant-water system (Chartzoulakis and Psarras, 2005; Zavala, 2004), being 

included in evapotranspiration models (Allen et al., 2006; Carlson et al., 1995) as well as hydrological 

models (Purkey et al., 2007; Yates et al., 2005). At the individual level, temperature affects plant 

growth and net primary productivity since photosynthetic and respiration rates depend on it. Moreover, 

Tair plays a critical role in vegetation distributions, phenology, and growth (Benavides et al., 2007; Stahl 

et al., 2006). The maximum temperature also shows significant relationship with the occurrence of 

wildfire on hot and sunny days (Aldersley et al., 2011; Litschert et al., 2012). Therefore, detailed 

knowledge of the spatial variability of air temperature is of interest for many research and 

management. 

 

In addition, Tair plays an important role in energy balance and is a key input in various environmental 

models and applications, such as crop evapotranspiration estimation (De Bruin et al., 2010), 

distributed hydrology (Gao et al., 2014) and climate change models (Lofgren et al., 2011). Moreover, 

the importance of temperature in urban area are related to heat stress and human health. 

Meteorological measurements provide accurate discrete Tair information for specific locations but have 

limited ability to describe its spatial heterogeneity over large areas (Benali et al., 2012; Willmott and 

Robeson, 1995). The non-uniform spatial distribution of weather station locations within most networks 

and the complexity of the land surface conditions and patterns make it a challenge to get spatial-

continuous Tair data. 

 

However, weather stations are usually sparsely distributed in mountainous regions, especially in high-

elevation areas, and thus may not optimally represent all environments (Rolland, 2003). Given the 

large spatial heterogeneity of Tair in complex terrain (Holden et al., 2011), it is difficult to accurately 

characterize the distribution of Tair over mountainous areas (Carrega, 1995). Different interpolation 

methods have been used to generate spatially continuous Tair from point station measurements 

(Benavides et al., 2007; Dodson and Marks, 1997; Duhan et al., 2013; Kurtzman and Kadmon, 1999; 

Stahl et al., 2006). However, the performance of interpolation methods is highly dependent on the 

spatial density and distribution of weather stations (Chan and Paelinckx, 2008; Vogt et al., 1997), 

which is not considered satisfactory in mountainous areas. 

 

Satellite remote sensing observations from global imaging sensors, such as the Advanced Very High 

Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS), 

represent a potentially valuable alternative to characterize spatially-detailed Tair patterns across large 

areas. A split window technique was applied to AVHRR (Pinheiro et al. 2006), MODIS (Wan et al., 

2002), and Meteosat (Atitar and Sobrino, 2009) thermal data to estimate Land Surface Temperature 

(LST). The science-grade quality of the LST data collected by MODIS has proven valuable for 

monitoring land surface dynamics over large areas (Benali et al., 2012, Mostovoy et al., 2006, Lin et 

al., 2012). 

 

The earth’s surface is heated by solar radiation, while the atmosphere is mainly heated from the 

ground up through longwave infrared radiation (Frederick et al., 2006). The relationship between Land 
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Surface Temperature and Tair may vary with time and location, because the land surface energy 

balance is a complex phenomenon that depends on multiple factors (e.g., cloud cover, surface 

roughness, wind speed and soil moisture), whereas some of them (e.g., wind speed) are usually not 

available from satellite (Goward et al., 1997; Prince et al., 1998; Stisen et al., 2007). 
 

An accurate estimation of Tair and the mapping of its spatial distribution are useful for predicting 

ecological consequences of climate change. For example, climate warming will lead to higher 

temperatures and an increase of extreme weather conditions, which are associated with changes in 

wildfire regime (Westerling et al., 2006; Chen et al., 2011; Manzo-Delgado et al., 2009), forest 

biomass distribution (Reich et al., 2014) and crop yield (Ruane et al., 2014; Rosenzweig et al., 2014). 

The demand for accurate spatial Tair data over a large scale has continued to rise (Oyler et al., 2015; 

Beier et al., 2012). However, the spatial distribution of the weather stations in many parts of the world, 

is often limited which restricts the use of Tair measurements over a large spatial domain (Vancutsem et 

al., 2010). LST, but on the other hand, is measured in a global extent with significant higher spatial 

coverage (Jin and Dickinson, 2010). The US National Research Council and the Intergovernmental 

Panel on Climate Change (IPCC) expressed the need for long-term remotely sensed LST data in 

global warming studies to overcome the limits of conventional surface Tair measurements (IPCC, 2007, 

Jin, 2004). Remote sensing data has great potential to estimate spatial-temporal patterns of Tair which 

can further our knowledge, on both the climate and terrestrial biological processes at regional and 

global scales (Benaliet al., 2012). Monitoring and understanding the trends of Tair and LST are crucial 

in the study of regional and global climate changes (Yoo et al., 2011). LST can be monitored and 

modelled from multiple daily satellite observations, such as the MODIS LST. Studies have shown that 

LST can be used for linear regression estimates of daily minimum and maximum Tair on a local scale 

(Mostovoy et al., 2006; Vancutsem et al., 2010; Zhang et al., 2011a; Yoo et al., 2011; Evrendilek et al., 

2012; Benali et al., 2012; Zhu et al., 2013). Cresswell et al. (1999) found an over and underestimation 

of Tair during the day and at night, respectively, from Meteosat LST observations. They attempted to 

correct these errors and produce a proxy of Tair Tair by applying a solar zenith angle correction on the 

Meteosat geostationary observations. They achieved an accuracy of 3°C for over 70% of the Meteosat 

temperatures. Similarly, Jin and Dickinson (2010) have studied the differences in the diurnal cycles of 

LST and Tair over a single site. Some studies (Florio et al., 2004) have used several statistical 

approaches that combined a simple AVHRR Spilt-Window Technique (SWT) with ground 

meteorological station measurements in the prediction of Tair. Other studies (Wloczyk et al., 2011) 

have used the Landsat LST data to derive Tair. They have attempted to assign the satellite-derived Tair 

to a certain height above the ground and have investigated the possibility of a simple correction for 

reference height. They also considered the link between Tair spatial pattern and the window-size of the 

Landsat LST pixels. Xu et al. (2012) used four empirical regression models to estimate the relationship 

between Tair measurements and the MODIS-Aqua LST and found different relationships between the 

two different LC types in their study. They also assessed the effect of the MODIS LST window-size on 

the agreement between the two variables and found that spatial averaging over multiple pixels 

improves the accuracy of Tair estimates. Zaksek and Schroedter-Homscheidt (2009) reviewed the 

types of methods commonly used to estimate Tair based on LST, dividing them into three distinct 

groups: 
 

1) Statistical approaches which are based on regression techniques, can be simple if only based on 

LST and Tair (e.g. Mostovoy et al., 2006; Vogt et al., 1997) or advanced, when more than one 

independent variable is used such as solar zenith angle (SZA), elevation, altitude, Julian day among 

others (Lin et al., 2012; Cresswell et al., 1999; Jang et al., 2004). Lin et al. (2012) used stepwise linear 

regression method to estimate daily maximum air temperature (Tmax) and daily minimum air 

temperature (Tmin) with MAE = 1.9, agreement index = 0.79 and MAE = 1.9 °C, agreement index = 

0.92, respectively, over east Africa. Fu et al. (2011) used linear regression between MODIS LST and 
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Tmax from stations on the northern Tibetan Plateau. In general, these methods perform well within the 

spatial and time frame they were developed, but the accuracy might decrease when extended in time 

and space (Stisen et al., 2007). Statistical methods generally perform well within the spatial and time 

frame they were derived in, but have limited generalization and require large amounts of data to train 

the algorithms (Stisen et al., 2007). 

 

2) The second category is index-based such as Temperature-Vegetation index (TVX). It is based on 

the assumption that for an infinitely thick canopy, the top-of-canopy temperature is the same as within 

the canopy (Czajkowski et al., 2000; Prihodko and Goward (1997), Nemani and Running et al., 1989; 

Nieto et al., 2011) and uses the Normalized Difference Vegetation Index (NDVI) as a key input 

variable. However, the assumption of linear and negative slope between LST and NDVI is not always 

applicable and is influenced by the seasons, the type of ecosystem and soil moisture variability 

(Sandholt et al., 2002; Vancutsem et al., 2010). Zhu et al. (2013) used the TVX method to estimate 

daily Tmax with RMSE (the root mean square error) =3.709 °C, MAE (the mean absolute error) = 3.03 

°C and r (correlation coefficient) = 0.83 in Xiangride River Basin of China. However, Vancutsem et al. 

(2010) found that TVX method did not adapt to different ecosystems over Africa because non-

significant relationship between LST and NDVI in their study. Karnieli et al. (2003) found that the 

approaches based on this negative NDVI/LST relationship have minimal utility in energy-limited 

environments (e.g., high latitude and elevations) compared to moisture-limited environments because 

vegetation-expressed NDVI response is more related to available solar radiation than land surface 

conditions (e.g. soil moisture). 

 

3) The final approach uses surface energy balance parameterizations based on physically-based 

models (Sun et al., 2005). The sum of incoming net radiation is considered equal to the sum of the soil 

heat flux, sensible flux and latent heat flux (Zakšek and Schroedter-Homscheidt, 2009; Meteotest 

2010; Sun et al., 2005). However these methods require large amounts of information that are usually 

not only from remote sensing (e.g., roughness, soil physical properties) (Benali et al., 2012, Mostovoy 

et al., 2006, Prince et al., 1998). 

 

Most of the previous studies have focused on daily estimations or instantaneous Tair. The TVX method 

has been widely used for Tair estimation. Czajkowski et al. (2000) estimated Tavg for a weekly period 

with associated RMSE between 1.72 and 3.48 °C and R2=0.64. Stisen et al. (2007) and Prihodko and 

Goward (1997) estimated Tair with RMSE higher than 2.5 °C and R
2
 between 0.64 and 0.86. Cresswell 

et al. (1999) used a statistical method to derive instantaneous Tair with an associated RMSE below 3 

°C for more than 70% of the sampled data. Zaksek and Schroedter-Homscheidt (2009) used a more 

sophisticated method, which was based on the energy balance to estimate instantaneous Tair with an 

RMSE of 2°C. Vancutsem et al. (2010) used 1 km MODIS data to estimate weekly Tmin and Tmax. They 

reported correlations between LST and Tmin ranging from 0.01 to 0.96 for several stations and Tmax 

was estimated with an R
2
=0.92 and RMSE=1.83 °C. 

 

Moreover, in previous studies, several variables were employed to estimate air temperature. For 

example, the variables used by Benali et al. (2012) included LST, Julian Day, elevation, and the 

distance to coast. Benali et al. (2012) used both weekly daytime LST data (LSTday) and night time LST 

data (LSTnight) to estimate the average, maximum and minimum weekly temperature. They found that 

there was a higher correlation between average weekly temperature and averaged weekly LSTnight, 

which indicates the potential of LSTnight in estimating averaged weekly temperature. The variables 

used by Kim and Han (2013) included LST, NDVI, altitude, and solar zenith angle. The variables used 

by Cristóbal, Ninyerola and Pons (2008) included LST, NDVI, and albedo. The variables used by 

Zakšek and Schroedter-Homscheidt (2009) included LST, NDVI, solar zenith, albedo, solar radiation, 
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and altitude. After comprehensive consideration of these variables, twelve variables were selected as 

the predictors for the modelling of air temperature during the day and night time: LST, NDVI, Julian 

day, latitude, longitude, Emissivity31, Emissivity32, altitude, albedo, wind speed, wind direction and air 

pressure. 

 

The main objective of this study was to estimate the air temperature during day and night time with 

high spatial resolution in Berlin from Moderate Resolution Imaging Spectroradiometer (MODIS) data 

by for different land cover types. 

 

First, this research presents the comparison of state-of-the-art remote sensing-based LST data from 

MODIS with Tair for the six LC/LU. Within this study, we compared the relationship between Tair and the 

Four LST products of MODIS over Berlin in order to analyze the agreement between LST from MODIS 

Terra and Aqua and Tair for the period of 2007 to 2013 based on different land cover classes. 

Specifically, the spatial scale effects of the relationship between Tair and LST were first analysed to 

determine the best window size to retrieve Tair in the study area. The comparison is done by using 

statistical parameters such as the correlation coefficient, the slope and the intercept with the y-axis of 

the regression line, mean bias error (MBE), and normalized mean bias which known as bias. The MBE 

is calculated by the difference between LST and Tair divided by the amount of observed time steps. If 

the MBE is positive, the LST detects warmer temperatures than the measured Tair, and vice versa 

(Hachem et al., 2012). Then Adaptive neuro fuzzy system (ANFIS), Artificial Neural Network (ANN) 

and support vector machine (SVR) models were developed to estimate Tair , and the accuracy of these 

models were assessed by comparison with the observed air temperature data from weather stations 

and the cross validation (CV) approach, in order to find the best model with high accuracy during the 

day and night time. The errors associated with Tair estimation based on remote sensing data are often 

large and strongly limit its applicability (e.g. Czajkowski et al., 2000; Vazquez et al., 1997; Vogt et al., 

1997). One of the objectives of this work is to provide Tair estimations with an accuracy, which will 

potentiate the future applications. Moreover, tuning the hyper parameters of some models like SVR 

and ANN were investigated. In order to select the hyper parameters of SVR, Simulated Annealing (SA) 

was applied and a multiple-layer feed-forward (MLF) neural networks with three layers and different 

nodes in hidden layers are used with Levenberg–Marquardt back-propagation (LM-BP) in order to 

achieve higher accuracy in the estimation of Tair during the day and night time over six LC/LU. 

 

2. Materials and Methods 

 

2.1. The Study Area 
 

Berlin is the capital city of Germany. It is located in the northeast of the country, covers an area of 892 

km
2
. Berlin is located on a mostly flat topography. Regarding land use patterns, Berlin is characterized 

by a significant amount of green areas and water bodies. Outside the inner city, there is relatively low 

buildings and population density, with many allotment gardens for private cultivation and recreation. 

There are a considerable number of urban brownfield sites, despite the trend of population growth in 

the last decade. Berlin consists of 45% water bodies and urban green spaces (forested and 

unforested, allotment gardens), almost 20% transport and infrastructural areas (streets and railways), 

and around 35% built-up areas (e.g. for residential use). Table 1 shows the location and the related 

land use of the weather stations in Berlin which are used in this study. 

 

2.2. Data Description 
 

Three main datasets for the period of 2007-2013 according to the availability of meteorological station 

record and MODIS data were used: 
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1. Ground measurements from 20 meteorological stations in Berlin. 

2. Remotely sensed data. 

3. Digital elevation model (Berlin Digital Environmental Atlas). 

 

Table 1: Information about weather stations over Berlin including their LC/LU, latitude, longitude and elevation 

 

Station LC/LU Lat Long Elevation(m) 

Botanischer-Garten Green urban area 52.45 13.30 46.88 

Fasanen Industrial, commercial, public, military 52.51 13.33 34.08 

Tegel-Forstamt Forest 52.60 13.27 39.58 

Gatow Industrial, commercial, public, military 52.47 13.13 47.09 

Marzahn1 Green urban area 52.54 13.58 50.61 

Pichelsdorf Evergreen needle leaf tree 52.50 13.19 29.66 

Wannsee Evergreen needle leaf tree 52.43 13.18 40.77 

Dahlem-FU Industrial, commercial, public, military 52.45 13.31 67.50 

Tegel Airport 52.56 13.30 35.25 

Schonefeld Airport 52.38 13.53 45 

Buch Industrial, commercial, public, military 52.63 13.50 65.45 

Marzahn2 Green urban area 52.54 13.55 63.29 

Kaniswall Agriculture, semi-natural and wet area 52.40 13.73 32.57 

Tempelhof Airport 52.46 13.40 47.74 

Eiskeller Agriculture, semi-natural and wet area 52.58 13.13 31.78 

Kreuzberg Industrial, commercial, public, military 52.49 13.40 34.91 

Wannsee-meteo Evergreen needle leaf tree 52.43 13.18 43.49 

Adlershof Industrial, commercial, public, military 52.42 13.52 35.15 

Potsdam Industrial, commercial, public, military 52.38 13.11 33.79 

Insulaner Green urban area 52.45 13.35 43.75 

 

2.2.1. Meteorological Data 

 

Air temperature observations were obtained from 20 different meteorological ground stations in this 

study area. The measurements included daily Tair, wind speed, wind direction, air pressure and Julian 

day. The meteorological station records were obtained from the Deutscher Wetterdienst (ftp://ftp-

cdc.dwd.de/pub/CDC) and from the Freie university Berlin meteorological station (http://mevis-

www.met.fu-berlin.de/devel/mevis). The accuracy of observation data in meteorological stations is as 

following: 

 

1. 2m air temperature: ± 0.2 K 

2. Wind speed: ± 0.3 of measured value 

3. Wind direction: ± 5C
o
 

4. Relative humidity: ± 0.3% up to 0.5% 

5. Air pressure: ± 0.1 hpa 

 

2.2.2. MODIS Data 

 

The second source of data is the satellite data. MODIS sensors were launched on board the National 

Aerodynamics and Space Administration (NASA) Observing System (EOS) Terra and Aqua satellites 

in December 1999 and May 2002, respectively (Zhu et al., 2013). Both sensors are on board sun-

synchronous polar orbiting satellites. MODIS Terra data is available during 10:30–12:00 a.m. and p.m. 

(daytime/night time) local time, while MODIS Aqua sensor collects the imagery during 1:00–3:00 a.m. 

and p.m. (daytime/night time). In this study, the following products of MODIS were used: 

ftp://ftp-cdc.dwd.de/pub/CDC
ftp://ftp-cdc.dwd.de/pub/CDC
http://mevis-www.met.fu-berlin.de/devel/mevis)
http://mevis-www.met.fu-berlin.de/devel/mevis)
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1. MODIS daily land surface temperature at 1km resolution, from Terra (MOD11A1.005) 

2. MODIS daily land surface temperature at 1km resolution, from Aqua (MYD11A1.005) 

3. MODIS monthly vegetation index at 1km resolution from Terra (MOD13A2.005) 

4. MODIS monthly vegetation index at 1km resolution from Aqua (MYD13A2.005) product  

 

Daily MODIS LST and monthly NDVI from Aqua and Terra were extracted at the nearest points to the 

stations. The LST product from MODIS has been used in previous studies to derive Tair (Benali et al., 

2012, Vancutsem et al., 2010, Zhu et al., 2013). All MODIS LST data used in this study were acquired 

from the U.S. Geological Survey (USGS) website (Piao et al., 2009). We used two MODIS LST 

products MOD11A1 and MYD11A1 from Terra and Aqua satellites, respectively. The MODIS LST 

consists of daytime and night time data at a spatial resolution of 1 km. Thus, in total there are four LST 

datasets: Aqua daytime, Aqua night time, Terra daytime and Terra night time. 

 

2.2.2.1. Vegetation Index 

 

Normalized difference vegetation index is the most common remote sensing index used to 

parameterize vegetation status (Zhu et al., 2013, Stow et al., 2004, Raynolds et al., 2008). The 

absorption and reflectivity of the vegetation cover are correlated with their structural properties, such 

as leaf area index (LAI), fractional vegetation cover (FVC), and their physiological condition (Bustos et 

al.2014, Raynolds et al., 2006). The values of NDVI vary between −1 and 1, where the range between 

0.2 and 0.9 is mostly common in continuous vegetation cover (Bustos et al.2014). In this study, the 

NDVI was extracted from Terra (MOD13A2.005) and Aqua (MYD13A2.005) products with 16-day 

temporal and 1km resolution as mentioned in Table 2. 

 

Table 2: Data source and variables 

 

Variable Source Explanation 

Land surface 

temperature 
MODIS 

Land Surface temperature derived over the 2007–2013 time period using 

MYD11A1, MOD11A1 product 

Julian Date 
Meteorological 

data 
The continuous count of days was from 1 January to the last day every year 

Emissivity31 MODIS 
Emissivity31 derived over the 2007–2013 time period using MYD11A2, 

MOD11A1 product 

Emissivity32 MODIS 
Emissivity32 derived over the 2007–2013 time period using MYD11A2, 

MOD11A1 product 

Normalized 

Difference 

Vegetation Index 

MODIS 
vegetation index at 1km resolution from Terra (MOD13A2.005) and Aqua 

(MYD13A2.005) products with 16day temporal resolution 

Albedo MODIS 
Albedo at 1Km resolution from Terra (MCD43B3.005) product with 16 day 

temporal resolution 

Relative humidity 
Meteorological 

Data 
The RH was extracted for each station during the year of 2007–2013 

Altitude DEM 
The altitude extracted from a 5m resolution digital elevation model (DEM) 

according to the location of meteorological stations 

Latitude 
Meteorological 

data 

The geographical location of meteorological stations was extracted from 

meteorological metadata 

Wind direction 
Meteorological 

data 
The WD was extracted for each station during the year of 2007–2013 

Wind speed 
Meteorological 

data 
The WS was extracted for each station during the year of 2007–2013 

Air pressure 
Meteorological 

data 
The AP was extracted for each station during the year of 2007–2013 
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2.2.3. Auxiliary Data 

 

In addition to MODIS products (LST, emissivity31, emissivity32), Albedo and NDVI, some auxiliary 

variables were used, including latitude, altitude, Julian day, air pressure, wind speed, wind direction 

and relative humidity which is presented in Table 2. These auxiliary variables either have a known 

impact on Tair and LST or influence the relationship between Tair and LST. Latitude, LC/LU and altitude 

were derived from the location of meteorological stations. Altitude was obtained from a 5m resolution 

digital elevation model (DEM) (downloaded from https://www.eea.europa.eu/data-and-

maps/data/urban-atlas). Moreover, Julian day was also considered as proxies for the fraction of solar 

energy absorption during the day and emission during the night, influencing the diurnal amplitude of 

Tair throughout the year. Julian day is the continuous count of days from 1 January every year. In 

addition, the LC/LU of each meteorological station was extracted in terms of its position, and 

reclassified into urban, industrial, forest, airport, needle leaf trees and agriculture based on a 5m 

resolution map of LC/LU, which was downloaded from https://www.eea.europa.eu/data-and-

maps/data/urban-atlas. 

 

In addition, all data (Auxiliary and MODIS data) were combined to create a single dataset for each 

LC/LU for day and night time. The collinearity of independent variables was detected using variance 

inflation factor (VIF > 10) and pair wise correlation (r > 0.75) (Zurr et al., 2010, Dormann et al., 2013). 

 

2.3. LST Pre-Processing 

 

A certain number of pre-processing steps were required to convert the original LST product in HDF 

format to raster layers with a versatile projected coordinate system. Firstly, raster subsets of the LST 

product were extracted based on the boundary extent of the study area. LST L3 product is gridded in 

the global Sinusoidal projection, and the grid containing data for the study area is located at column 18 

(h18) and line 03 (v03). It is important to eliminate low quality data in the MODIS LST data because 

remote sensing based Tair estimates are strongly influenced by errors (e.g., errors caused by clouds 

and large sensor viewing angles, uncertainties in surface emissivity (Wan et al., 2004). Validation 

studies of MODIS LST show that under clear sky conditions the precision is approximately 1 K or less, 

but higher errors would be observed at large viewing angles and in semiarid regions (Wan et al., 

2008). So only the pixels of the targeted land cover types that were flagged in the MODIS quality 

assurance data as cloud free and of high quality were retained. 

 

2.3.1. Calculating LST of Weather Station Location 

 

LST data under clear sky conditions at weather stations are retrieved by the following steps: 

 

 A total of 5110 MODIS HDF format (MOD11A1 and MYD11A1, h18v03, Collection 5, from 1 

January 2007 to 31 December 2013 over Berlin) in HDF (Hierarchical Data Format) format 

were re-projected to WGS_1984_UTM_ zone_33N using the nearest neighbor resampling 

method. The corresponding layers (LST_Day_1km, LST_Night_1km, Daytime LST 

observation time, and Night time LST observation time) were extracted. However, Daytime 

and Night time LST observation time were used in order to identify the approximate overpass 

time of MODIS at local time. 

 MODIS LST data for the pixels in which the weather stations are located are extracted from 

MODIS using nearest neighbor algorithm. 

 All these LST data (DN value) were converted to Celsius temperature using the following 

equation:  

 

https://www.eea.europa.eu/data-and-maps/data/urban-atlas
https://www.eea.europa.eu/data-and-maps/data/urban-atlas
https://www.eea.europa.eu/data-and-maps/data/urban-atlas
https://www.eea.europa.eu/data-and-maps/data/urban-atlas
https://www.eea.europa.eu/data-and-maps/data/urban-atlas
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T (C
o
) = 0.02 * DN – 273.15 … (1) 

 

Where is the C
o
 is the Celsius temperature and 0.02 is the scale factor of the MODIS LST 

product. 

 

 Removing low quality data: MODIS LST products are not available for a location (pixel) if 

clouds are present (Wan 2008). However, there are some pixels that are lightly covered or 

contaminated by clouds. These pixels are not removed because the contamination is very 

small and cannot be detected by the cloud-removing mask algorithm (Ackerman et al., 2008, 

Williamson et al., 2013; Xu and Shen 2013). To avoid this kind of data, only the pixels of the 

targeted land cover types that were flagged in the MODIS quality assurance data as cloud-free 

and of high quality were retained. 

 

2.4. The Relationship between Observed Tair and the Four LST Products from MODIS 

 

The influence of the time of observation on the estimation of Tair has been discussed in several 

studies, which resulted in different conclusions. Benali et al. (2012) stated that the use of both aqua 

LSTday and LSTnight could improve the estimation of Tday and Tnight , (Tday and Tnight are not the maximum 

and minimum temperature of a day and night time)respectively, because the MODIS Aqua overpass 

time is closer to the time of both Tday and Tnight than Terra’s. In contrast, Zhu et al. (2013) showed that 

both terra LSTday and LSTnight were better than aqua LSTday and LSTnight for Tair estimations in 

Xiangride River basin of China. In another study, Mostovoy et al. (2006) found that the difference 

between the satellite overpass (Terra and Aqua) had little impact on the estimation accuracy of Tair. 

 

 
 

Figure 1: Average viewing times (local solar) & overpass nodes (shown as labels and arrows), maximum 

variations from the mean observation times (in hour shown by lower and upper caps of whiskers), median times 

(middle line), lower (25th) and upper (75th) quartiles of all observation times (lower and upper edges of boxes) of 

four overpasses of MODIS (onboard Terra and Aqua, two overpasses each) over the study area of 7 years (2007–

2013). The mean local solar observation time of each overpass is subtracted from the series (scaled to 0) but is 

labeled on each box 
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2.4.1. Temporal Matching of Tair to LST Observations 

 

The temporal frequency of the MODIS LST L3 product is four observations per day (Terra passes over 

the equator at approximately 10:30 am, 10:30 pm each day, Aqua satellite passes over the equator at 

approximately 1:30 pm and 1:30 am) in cloud free conditions, which are derived from a composite of 

several MODIS overpasses with different view angles (Wan 1999; Zhu et al., 2013). Depending on the 

local longitude (which results in changes in the sensor’s viewing angle) and latitude, the local solar 

observation times at each pixel can vary up to 120 minutes or more over a repeating cycle (16 days) of 

the MODIS twin sensors (Figure 1). Other than that, overpass times do not follow a regular period 

during the day and over the sensor’s repeat cycle. On the other hand, Tair data from the weather 

stations are provided at an hourly and by the minute frequency in Berlin in standard time (MEZ and 

UTC). This complicates the matching of the MODIS observation times with Tair time-series. To 

overcome this issue, for those stations that are in minute temporal resolution, we only need to convert 

from MEZ to UTC, but for other stations that are in hourly temporal resolution, a linear equation was 

considered for the synchronizing of Tair with LST form HDF file. For the creation of a data set for use 

during the day and night time for each LC/LU separately, we need to consider the overpass time of 

MODIS over Berlin. Another point is that the data has a significant number of missing points due to 

clouds in our study area, therefore in order to increase the maximum of usable observations, as did 

Alcantara et al. (2013) in his research, the terra and aqua data were considered. As shown in Figure 1, 

the LST day from terra and aqua in descending and ascending orbit were considered as a day time 

series, respectively and only terra in ascending orbit was considered as night time series because of 

higher correlation which was observed between LST and Tair in this time. 

 

2.4.2. Day/Night analysis 

 

Apart from spatial variations, the observation time can affect the relationship between LST and Tair 

time-series. To identify any variability in LST and Tair relationship in a diurnal basis, time-series of both 

variables were separated, based on the MODIS overpass times to produce four series over a single 

pixel window from MODIS-Terra and MODIS-Aqua day and night overpasses (four in total) were used 

in this analysis. 

 

2.4.3. Statistical methods 

 

A simple linear relationship is often assumed between LST and Tair in literature (Brunel, 1989; 

Mostovoy et al., 2006). In view of this, a univariate linear regression analysis with the MODIS LST as 

the independent (or explanatory) and Tair as the dependent (or response) variable was applied to 

analyze LST and Tair relationship. The correlation coefficient, r, is reported as a quantitative measure 

to evaluate the strength of the agreement between LST and Tair time series in different steps of the 

analysis. Significance levels (p-values) are reported in the results to express how unlikely the given r 

values would occur if no relationship between the explanatory and response variables did exist. The 

smaller the p-level is, the more significant the relationship. Moreover, two other statistical 

measurements such as RMSD and Normalized mean Bias (Bias) were considered as following:  

 

 … (2) 

 

Where n is the number of data, M is LST value and O is the temperature. 
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3. Theory and Methodology 

 

In this section, a brief overview of a SVR, Simulated annealing (SA), ANN and ANFIS will be 

discussed. 

 

3.1. Support Vector Regression 

 

Support vector machine (SVM) is a very promising artificial intelligence method applied extensively for 

solving the classification problems. Support Vector Regression (SVR) method is derived from the 

SVM, which is a powerful technique to solve a nonlinear regression problem, but it has received less 

attention, due to the fact that SVR algorithm is sensitive to users’ defined free parameters. The 

involved hyper parameters of the SVR model consist of penalty parameter, insensitive loss function 

parameter, and the parameter for kernel function. Inappropriate parameters in SVR can lead to over 

fitting or under fitting problems.How to properly use the hyper parameters is a major task, which has a 

significant impact on the optimal generalization performance and the SVR regression accuracy 

(Schölkopf and Smola 1998). Recently, a number of new algorithms like genetic algorithm, grid search 

optimizing, cross-validation and particle swarm optimization (PSO) have been proposed for the 

optimization of the SVR parameters (Sartakhti et al., 2011; Ustün et al., 2005; Wang et al., 2016; Chen 

and Wang, 2007; Hu et al., 2010; Keerthi, 2002; Ito and Nakano, 2005). In this work, the SA algorithm 

was applied for tuning the parameters of SVR. 

 

3.1.1. Brief Overview of SVR 

 

In this section, the basic SVR concept is concisely described; for detailed description, please see 

(Cristianini and Taylor, 2000; Smola and Schölkopf, 2004; Ito and Nakano, 2005; Keerthi, 2002). 

Suppose a given training data of elements {(xi, yi), = 1, 2, … N}, where xi denotes the ith element in n-

dimensional space; that is xi = {x1i , . . . xni} ∈ R
n
, and yi ∈ R is the output value corresponding to xi. 

According to mathematical notation, the SVR algorithm builds the linear regression function as follows: 

 

… (3) 

 

Where w and b are the slope and offset coefficients and x denotes the high-dimensional feature space, 

which is nonlinearly mapped from the input space x. The previous regression problem is equivalent to 

minimizing the following convex optimization problem shown in equation (4):  

 

… (4) 

 

In this equation, an implicit assumption is that a function ƒ essentially approximates all pairs (xi, yi) 

with Ɛ precision, but sometimes this may not be the case. Therefore, by introducing two additional 

positive slack variables , the minimization is reformulated as the following constrained 

optimization problem shown in equation 5: 

 

Subject to 
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… (5) 

 

Where the parameter c is the regulator, which is determined by the user and it influences a tradeoff 

between an approximation error and the weights vector norm and slack variables that represent the 

distance from actual values to the corresponding boundary values of tube. According to the strategy 

outlined by Scholkopf and Smola (1998), by applying Lagrangian theory and the KKT condition, the 

constrained optimization problem can be further restated as the following equation: was applied in the 

study, which has the ability to universally approximate any distribution in the feature space. With an 

appropriate parameter, the radial basis function (RBF) usually provides a better prediction 

performance, so it is adopted in this study as shown in the following formula: 

 

… (6) 

 

Here αi and αi* are the Lagrange multipliers. The term (xi, x) is defined as the kernel function. The 

nonlinear separable cases could be easily transformed to linear cases by mapping the original variable 

into a new feature space of high dimension using (xi, x). The RBF was applied in the study, which has 

the ability to universally approximate any distribution in the feature space. With an appropriate 

parameter, RBF usually provides a better prediction performance, so it is adopted in this study as 

shown in equation 7: 

 

… (7) 

 

where xi and xj are input vector spaces and σ² is the bandwidth of the kernel function. In the above 

equations, there exist three hyper-parameters to be determined in advance, that is, the penalty 

parameter ʗ, insensitive parameter Ɛ, and the related kernel function parameters σ². They heavily 

affect the regression accuracy and computation complexity of SVR. The penalty parameter ʗ controls 

the degree of punishing the samples whose errors go beyond the given value. The insensitive 

parameter Ɛ controls the width of the Ɛ-insensitive zone used to fit the training data. The value of Ɛ 

can enhance the generalization capability; with the increase of Ɛ, the number of support vectors will 

decrease, and the algorithmic computation complexity will also reduce. The bandwidth of σ the kernel 

function has a great influence on the performance of the learning machine. In this study, one 

optimization method, that is, simulated annealing (SA), is presented to determine the optimal hyper 

parameters of the SVR model. According to research of Ustün and Melssen (2005), the general range 

of ʗ, σ², and Ɛ has been given. In the trial operation, we narrowed it to avoid blindness in the 

optimization process. In this study, the set of hyper parameter (ʗ, σ², Ɛ) is initialized in the given range 

ʗ ∈ [0, 1000], σ² ∈ [0, 2], and Ɛ ∈ [0, 0.0001], where optimization method (SA) is to seek the global 

optimal solutions. 
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3.1.2. Simulated Annealing Optimization Method  

 

Simulated annealing is a local search algorithm capable of escaping from local optima. Its ease of 

implementation and convergence properties and its use of hill climbing moves to escape local optima 

have made it a popular technique over the past two decades. Survey articles that provide a good 

overview of simulated annealing’s theoretical development and domains of application include (Eglese, 

1990; Fleischer, 1995; Henderson et al., 2003; Koulamas et al., 1994; Romeo et al., 1991; Anily and 

Federgruen, 1987; Suman and Kumar, 2006; Abramson et al., 1999; Ben-Ameur, 2004; Aarts and 

Korst, 1989; van Laarhoven and Aarts, 1988; Aarts and Lenstra, 1997). This study proposed an SA-

based approach for parameter tuning in the SVR. For convenience, the SVR model with SA is referred 

to as a SA-SVR method. The idea, is to find the parameters that minimize the generalization error of 

the algorithm at hand. This error can be estimated on some data which has not been used for learning. 

To achieve this aim, the three basic decision variables as mentioned before must be tuned in proper 

manner. We propose here a methodology for automatically tuning multiple parameters for the SVR. 

The process of SA-SVR algorithm approach is briefly summarized as follows: 

 

Algorithm: Simulated annealing algorithm. 
 
Step 1: Solution space X  
Object function F  
Neighborhood structure N 

 
Step 2: Current =An initial solution, among all possible state (X)  
Soptimal=Current  
T0=INFINITY  
T=T0  
Iteration=MAX_Iter  
Epoch=1  
Select temperature reduction function alpha, 0.8≤ alpha ≤0.99 
 

Step 3: Repeat  
Next= randomly selected from N (Current)  
ΔF=F [Next] – F [Current]  
If ΔF> 0:  
Current=Next  
else  
r=rand (0, 1) % Generate a random number r ϵ (0, 1)  

if   :  
Current=Next  
Until Epoch <= Iteration  
T=alpha*T  
If F [Current] < F [ Soptimal] :  
Soptimal =Current  
Until stop condition is met  
 

Step 4: Return Soptimal as an approximation to the global minimum solution  

 

The proposed parameter values of SA-SVR approach were set as follows: Iteration = 200, T0 was set 

to a sufficiently large number, while the set of hyper parameters (ʗ, σ², Ɛ) is initialized in the given 

range ʗ ∈ [0, 10000], σ² ∈ [0, 2], and Ɛ ∈ [0, 0.0001], where optimization method (SA) is to seek the 

global optimal solutions. The best solution among these possible solutions is then selected as the 

optimal solution in the SA-SVR.  
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3.2. An Adaptive Neuro-Fuzzy Inference System  

 

An adaptive neuro-fuzzy inference system or adaptive network-based fuzzy inference system (ANFIS) 

is a kind of artificial neural network that is based on Takagi–Sugeno fuzzy inference system (Sugeno 

and Tanaka, 1992; Takagi and Sugeno, 1985). The technique was developed in the early 1990s (Jang 

and Shing (1991, 1993)). Since it integrates both neural networks and fuzzy logic principles, it has a 

potential to capture the benefits of both in a single framework. Its inference system corresponds to a 

set of fuzzy IF–THEN rules that have learning capability to approximate nonlinear functions (Abraham, 

2005). Hence, ANFIS is considered to be a universal estimator (Jang, Sun and Mizutani, 1997). 

 

3.3. Neural Network 

 

Artificial neural network models are universal approximations with the ability to generalize through 

learning non-linear relationships between provided variables of input(s) and output(s) (Hájek and Olej 

2012). ANN are organized and interconnected collections of processing units (neurons or nodes), 

whose operation is analogue to a neural structure (Müller and Fill, 2003). ANN extract its 

computational power from its solid parallel distribution structure and ability to learn/generalize, allowing 

the resolution of complex propositions in many known areas (Haykin 2001). ANN execution is inspired 

on the human brain (Haykin, 2001) and has been used in many applications with success. In 

agreement with Galvão et al. (1999), by the reason of its nonlinear structure, the ANN can acquire 

more complex data characteristics, which are not always possible using traditional statistical 

techniques (Maier et al., 2010; Razavi and Tolson, 2011). ANN is a robust computational technique 

which is primarily used for pattern recognition, classification, and prediction (Bose and Liang, 1996; 

Haykin, 1999; Panchal et al., 2011). The use of ANNs in meteorological applications includes the 

prediction of ozone concentration, sulfur dioxide concentration, tornadoes, storms, solar radiation, 

carbon dioxide, pollutants, and monsoon rainfall (Gardner and Dorling, 1998), monthly and year 

precipitation levels (Bodri and Cermak, 2000), tide charts (Steidley et al. 2005), wave heights (Wedge 

et al. 2005), flash floods (Luk et al., 2000), and air temperature (Jain et al., 2003; Smith et al., 2006; 

Maqsood et al. 2004), estimation of dew point temperature (Mittal and Zhang, 2003; Shank et al., 

2008). Bilgili and Sahin (2010) used ANN for predicting long-term monthly temperature and rainfall in 

Turkey. Kisi and Shiri (2011) introduced new hybrid wavelet-AI models for precipitation forecasting. 

Smith et al. (2005) developed an enhanced ANN for air temperature prediction by including information 

on seasonality and modifying parameters of an existing ANN model.  

 

3.3.1. Determining Hidden Node  

 

Many researchers put their best effort in analyzing the solution to the problem that how many neurons 

are kept in hidden layers in order to get the best results (Rivals I. and Personnaz L. 2000; F. 

Fnaiech.et al. 2001; Kortmann-Unbehauen 1988; Onoda 1995; Md. Islam and Murase (2001); Stuti 

Asthana and Rakesh K Bhujade (2011); Kazuhiro Shinike 2010; Doukim et al. 2010; Yuan et al. 2003; 

Wu and Hong 2010; Panchal et al. 2011; Hunter et al. 2012; Shuxiang et al. 2008; Ke and Liu (2008)), 

but unfortunately no one succeeded in finding the optimal formula for calculating the number of 

neurons that the neural network training time can be reduced and also accuracy in determining the 

target output can be increased. Usually some rule-of-thumb methods are used for determining the 

number of neurons in the hidden nodes.  

 
1. The number of hidden layer neurons are 2/3 (or 70% to 90%) of the size of the input layered. If 

this is insufficient then the number of output layer neurons can be added later on (Boger and 
Guterman, 1997).  
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2. The number of hidden layer neurons should be less than twice of the number of neurons in 
input layer (Berry and Linoff,1997).  

3. The size of the hidden layer neurons is between the input layer size and the output layer size 
(Blum, 1992).  

 

But the above three methods are not considered to be always true because not only the input layer 

and the output layer decide the size of the hidden layer neurons, but also the complexity of the 

activation function applied on the neurons, the neural network architecture, the training algorithm, and 

most important the training samples of the database on which the neural network is designed to 

execute. In this work, we decided to use the cross validating approach in the 3-layers MLP in the 

following simulations, in order to select the number of hidden nodes in the second layer. The 3-layer 

MLP contains an input layer, one hidden layer with nonlinear transfer functions and an output layer 

with linear transfer functions. The training algorithm is Back Propagation (BP) in order to get the 

configuration that minimizes the RMSE in the test phase while keeping an eye on over fitting and the 

train set error. 

 

3.3.2. Assess Predictive Performance of Models  

 

In a real application, cross-validation is a model assessment technique (Allen, 1974; Stone, 1974; 

Geisser, 1975) used to evaluate a machine learning algorithm’s performance in making predictions on 

new datasets which has not been trained on. This is done by partitioning a dataset and using a subset 

to train the algorithm and the remaining data for testing. Because cross-validation does not use all of 

the data to build a model, it is a commonly used method to prevent over fitting during training. Each 

round of cross-validation involves, randomly partitioning the original dataset into a training set and a 

testing set. The training set is then used to train a supervised learning algorithm and the testing set is 

used to evaluate its performance. This process is repeated several times and the average cross-

validation error is used as a performance indicator (Hastie et al., 2009; Yang, 2007b). Common CV 

techniques include, k-fold, Holdout, Leave out, repeated random sub-sampling, Stratify, Substituting. 

In this work, we apply K-fold CV (with k=4) techniques, in order to test how well our model is able to be 

trained by some data and then to estimate the data it hasn't seen before and then to select the best 

model. 

 

3.4. Data Normalization  

 

Before computing, data of both input and output variables were normalized. In this study, data of all 

variables used were normalized into the range [0, 1] with: 

 

…(8) 

 

where Xnorm is the normalized value, Xi is the original value, and Xmin and Xmax are the minimum and 

maximum values out of the sample of Xi. This was due to the eliminating influence of different 

dimensions of data and to the avoidance of overflows of the model during calculations, as a result of 

very large or small weights towards a maximization of model parsimony with considering 

computational effort. After the computation, output values were transformed back to the real prediction 

data. 
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3.5. Model Calibration and Validation  

 

Cross-validation was used to evaluate the generalizability of a model for estimating the air temperature 

with the LST data. The observations were randomly divided into two parts. 70% of the observations 

were used for model calibration, and the rest were used as test dataset for model validation. The 

accuracy of the estimated air temperature obtained from three estimating models, ANFIS, NN and SA-

SVR, have been assessed by a set of statistic measures, including: Root Mean-square Error (RMSE), 

coefficient of determination R-squared (R2), Mean Bias Error (MBE) and Mean Absolute Error (MAE), 

respectively. The RMSE (was mainly used in the development process of the model and represents 

residual errors, which gives a global perspective of the differences between the observed and 

estimated values (Sousa et al., 2007; Zheng et al., 2013; Willmott et al., 2005). The RMSD is 

calculated similarly to RMSE. These goodness of fit criteria are expressed as equations (9-12): 

 

 
 

where, M is the total number of the observation data, O and S are the average of the observed and 

estimated T2m, and Oi and Si are the observed and estimated T2m of the i
th
 data, respectively. In 

addition, graphical goodness-of-fit criteria such as quantile-quantile (Q-Q) diagram, bar plot of RMSE 

in train and test phases were applied for the comprehensive evaluation of simulation results. Although, 

the R
2
 criteria is a measure of goodness-of-fit of the model and higher values are indicative that the 

predictive model fits the data in a better way. By definition, R
2
 is the proportional measure of variance 

of one variable that can be predicted from the other variable. Thus, ideally the values of R
2
 to 

approach one is always desirable. However, a high R
2
 tells you that the curve came very close to the 

points, but in reality, it does not always indicate the model quality (Maddala, 2001). In order to have a 

reliable statistical comparison between the models, both the MAE and RMSE can be used together to 

ascertain the variation in errors in a given set of estimation. It should be noted that in MAE, all the 

individual errors have equal weight on the average, making it a linear score, but the RMSE has a 

quadratic error rule, where the errors are squared before being averaged. As a result, a relatively high 

weight is given to large errors. This could be useful when large errors are undesirable in a statistical 

model (Chai and Draxler, 2014; Armstrong, 2002).  

 

4. Theoretical Concepts for Selecting Input Parameters  

 

Spatial and temporal variation in temperature are governed by physical processes. For example, land 

surface temperature at some ‘locations’ in space and time (s0, t0|s ∈ S, t ∈ T) is a function of incoming 

solar radiation, cooling factor by wind, land cover, temperature inversion and other effects. The 

temperature patterns differ between day and nighttime also; during the night temperature patterns are 

(9) 

(11) 

(10) 

(12) 
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mainly determined by land cover, air humidity and proximity to water bodies and/or soil moisture (van 

Leeuwen et al., 2011). In urban and industrial areas, temperature is often locally somewhat higher due 

to heat emissions from industrial activities or heating (e.g. Cheval and Dumitrescu 2009). Moreover, 

near-surface air temperature is driven more by land surface temperature than by direct solar radiation 

(Zakšek and Schroedter-Homscheidt 2009), making LST an important variable for estimating Tair.  

 

Other parameters, such as vegetation cover, soil moisture, solar radiation, and albedo also have some 

influence on air temperature. In previous studies, several variables were employed to estimate air 

temperature. For example, the variables used by Benali et al. (2012) included LST, Julian Day, 

elevation, and distance to coast. The variables used by Kim and Han (2013) included LST, NDVI, 

altitude, and solar zenith angle. The variables used by Cristóbal, Ninyerola, and Pons (2008) included 

LST, NDVI, and albedo. The variables used by Zakšek and Schroedter-Homscheidt (2009) included 

LST, NDVI, solar zenith, albedo, solar radiation, and altitude. After comprehensive consideration of 

these variables, twelve variables were selected as the predictors for modelling air temperature: LST, 

NDVI, latitude, longitude, altitude, albedo, wind speed, wind direction, emissivity31, emissivity32, 

relative humidity and Julian day. The reasons for selecting these variables as input to our model for 

estimating the air temperature are summarized as follows: 

 

1 The latitude, longitude and elevation were selected as an input parameter to model because the 

incoming solar radiation can be globally derived as a function of this factors. Moreover, latitude, 

longitudes and elevation are always the underlying effect relative to temperature (Zhao and 

Cheng, 2005; Samanta et al., 2012; Stahl et al., 2006). 
 

2 Emissivity is important, because all objects at temperatures above absolute zero emit thermal 

radiation. However, for any particular wavelength and temperature the amount of thermal 

radiation emitted depends on the emissivity of the object's surface. Emissivity is defined as the 

ratio of the energy radiated from a material's surface to that radiated from a blackbody (a perfect 

emitter) at the same temperature and wavelength and under the same viewing conditions. The 

emissivity of a surface depends not only on the material but also on the nature of the surface. 

The emissivity also depends on the temperature of the surface as well as wavelength and 

angle. Knowledge of surface emissivity is important both for accurate non-contact temperature 

measurement and for heat transfer calculations. Moreover, Surface emissivity is a measure of 

inherent efficiency of the surface in converting heat energy into radiant energy above the 

surface (Sobrino et al., 2001). Therefore, land surface emissivity is critical for determining the 

thermal radiation of the land surface (Caselles et al., 1995). The emissivity of a surface is 

controlled by some factors such as water content, chemical composition, structure, roughness, 

and the observation conditions (i.e. wavelength, pixel resolution and observation angle) (Snyder 

et al., 1998). For these reasons, in our study, due to considering six different LC/LU, the land 

surface emissivity also considered as an input parameter. 
 

3 LST is the radiative temperature of the land surface (Ghent et al., 2010). It is influenced by 

albedo, vegetation cover and soil moisture (Land Surface Temperature Copernicus Global Land 

Service). The “surface” can include snow and ice, bare soil, grass, or the roofs of buildings 

(Land Surface Temperature: Global Maps, 2016). Near-surface air temperature “is a 

measurement of the average kinetic energy of the air near the surface of the Earth” (Near 

Surface Air Temperature - GES DISC-Goddard Earth Sciences Data and Information Services 

Center, 2016). Usually LST is measured by remote sensing whereas air temperature is 

measured 1-2 m above the ground. Near-surface air temperature is a consequence of complex 

effects of the turbulent heat transports produced by nearby heated surfaces (Unger, et al., 

2009). The advantage of using MODIS LST is that, they account for small differences in 
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temperature that are due to different land cover, moisture content which cannot modeled with 

constant physical parameters such as elevation, latitude, longitudes. 

 

4 The Julian day is proxies for the fraction of solar energy absorption during the day and emission 

during the night, influencing the diurnal amplitude of Tair throughout the year. The Julian day 

included the information of vegetation cover changes with seasons. Julian day is the continuous 

counting of days from 1st January every year. 

 

5 The NDVI and Albedo reflect the seasonal variation of land cover. 

 

6 The Relative humidity (RH) is the ratio of the partial pressure of water vapor to the equilibrium 

vapor pressure of water at a given temperature. Relative humidity depends on temperature and 

the pressure of the system of interest. It requires less water vapor to attain high relative 

humidity at low temperatures; more water vapor is required to attain high relative humidity in 

warm or hot air (Perry and Green, 2007). 

 

7 Moreover, Seasonal variation in some parameters such as relative humidity, wind speed, wind 

direction and air pressure contribute to explaining seasonal variation air temperature over six 

LC/LU. 

 

8 The MODIS LST can be used to improve spatial prediction of ground-measured values. 

 

5. Results and Discussion 

 

5.1. MODIS LST versus Tair time-series over a single pixel 

 

Before analyzing the effects of MODIS window size, the daily variability of LST and Tair relationship 

was examined by using separate LST series (over 1x1 window) (Diurnal differences). In this section, 

LST series used in this analysis is a composite time series which includes four daily LST observations 

(except for cloudy days) from both the MODIS Terra and Aqua day and night overpasses 

(approximately at 1:30, 10:30, 13:30, 22:30) supplied in the LST L3 product. 

 

Table 3: Statistical analyses between MODIS LST products and Tair observation from automatic meteorological 

stations. MODday, MODnight, MYDday and MYDnight are representative of MOD11A1 LSTday, MOD11A1 LSTnight, 

MYD11A1 LSTday and MYD11A1 LSTnight from Terra and Aqua respectively for urban and industrial LCT 

 

Dataset Urban Industrial 

 R
2 

RMSD MBE Bias R
2 

RMSD MBE Bias 
MOD

day
,T

day 0.88 3.72 0.25 0.01 0.86 3.69 -0.58 -0.03 
MOD

nigt,
T
night 0.87 3.63 -1.89 -0.21 0.80 4.57 -2.65 -0.28 

MYD
day

, T
day 0.87 4.22 1.57 0.09 0.86 3.81 0.23 0.01 

MYD
nig

T
night 0.88 2.94 -1.50 -0.21 0.80 4.21 -2.55 -0.35 

 

Table 4: Statistical analyses between MODIS LST products and Tair observation from automatic meteorological 

stations. MODday, MODnight , MYDday and MYDnight are representative of MOD11A1 LSTday, MOD11A1 LSTnight, 

MYD11A1 LSTday and MYD11A1 LSTnight from Terra and Aqua respectively for agriculture and needle leaf trees 

LCT 

 

Dataset  Agriculture   Needleleaftrees  

 R
2
 RMSD MBE Bias R

2
 RMSD MBE  Bias 

MOD
day

, T
day 0.91 2.89 -1.42 -0.08 0.85 4.21 0.49  0.02 

https://en.wikipedia.org/wiki/Partial_pressure
https://en.wikipedia.org/wiki/Equilibrium_vapor_pressure
https://en.wikipedia.org/wiki/Equilibrium_vapor_pressure
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MOD
night

, T
night 0.85 3.23 -0.82 -0.11 0.87 3.61 -1.93  -0.20 

MYD
day

, T
day 0.92 3.05 -0.22 -0.01 0.83 4.41 1.11  0.06 

MYD
night

, T
night 0.85 2.83 -0.43 -0.09 0.87 3.15 -1.59  -0.21 

 

The comparison between MODIS LST data and the Tair observations shows that LSTday and LSTnight 

from both Terra and Aqua, with the mean relative bias above and under zero tended to overestimate 

Tday and underestimate Tnight (Table 3-5) respectively as Cresswell et al. (1999) found the same result.  

 

Table 5: Statistical analyses between MODIS LST products and Tair observation from automatic meteorological 

stations. MODday, MODnight , MYDday and MYDnight are representative of MOD11A1 LSTday, MOD11A1 LSTnight, 

MYD11A1 LSTday and MYD11A1 LSTnight from Terra and Aqua respectively for airport and forest LCT 

 

Dataset Airport Forest 

 R
2 

RMSD MBE Bias R
2 

RMSD MBE Bias 
MOD

day
, T

day 0.90 3.99 1.65 0.10 0.89 4.43 2.46 0.13 
MOD

night
, T

night 0.86 4.32 -2.92 -0.31 0.83 3.69 0.73 0.08 
MYD

day
, T

day 0.89 4.80 2.72 0.15 0.88 4.82 3.54 0.17 
MYD

night
, T

night 0.86 3.71 -2.41 -0.32 0.88 2.85 1.15 0.18 

 

As shown in the table, a higher relative RMSD and bias values were seen for the Aqua LSTdaytime than 

the Terra LSTdaytime which might be given to the fact that more solar radiation has been received at the 

time of the Aqua MODIS overpass later in the day. Considering the scatterplots of LSTnight and Tnight 

from Aqua for the industrial LC type, has higher scattering than daytime observations which are more 

spread around the 1:1 line (Figure 5). This is undeniable evidence of the negative impact of 

urbanization on a surface urban heat island (UHI) and global warming This indicates the urban heat 

island with RMSD=4.21°C (Nguyen et al., 2015). 
 

 
 

Figure 2: Correlations between LST and Tair time-series separated based on approximate overpass times of 

MODIS-Aqua for seven years between 2007 to 2013, where each scatterplot shows MODIS-Aqua daytime (right-

up) and MODIS-Aqua night time (right-down) and also MODIS-Aqua day and nighttime observations (left up and 

down plots) plotted against Tair measurements at the corresponding times for airport LCT with P-value<0.01. DOY 

means day of year 
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Figure 3: Correlations between LST and Tair time-series separated based on approximate overpass times of 

MODIS-Aqua for seven years between 2007 to 2013, where each scatterplot shows MODIS-Aqua daytime (right-

up) and MODIS-Aqua night time (right-down) and also MODIS-Aqua day and nighttime observations (left up and 

down plots) plotted against Tair measurements at the corresponding times for forest LCT with P-value<0.01. DOY 

means day of year 

 

 
 

Figure 4: Correlations between LST and Tair time-series separated based on approximate overpass times of 

MODIS-Aqua for seven years between 2007 to 2013, where each scatterplot shows MODIS-Aqua daytime (right-

up) and MODIS-Aqua night time (right-down) and also MODIS-Aqua day and nighttime observations (left up and 

down plots) plotted against Tair measurements at the corresponding times for agriculture LCT with P-value<0.01 
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Figure 5: Correlations between LST and Tair time-series separated based on approximate overpass times of 

MODIS-Aqua for seven years between 2007 to 2013, where each scatterplot shows MODIS-Aqua daytime (right-

up) and MODIS-Aqua night time (right-down) and also MODIS-Aqua day and nighttime observations (left up and 

down plots) plotted against Tair measurements at the corresponding times for industrial LCT with P-value <0.01. 

DOY means day of year 

 

 
 

Figure 6: Correlations between LST and Tair time-series separated based on approximate overpass times of 

MODIS-Aqua for seven years between 2007 to 2013, where each scatterplot shows MODIS-Aqua daytime (right-

up) and MODIS-Aqua night time (right-down) and also MODIS-Aqua day and nighttime observations (left up and 

down plots) plotted against Tair measurements at the corresponding times for needle leaf trees LCT with P-value 

<0.01. DOY means day of year 
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Figure 7: Correlations between LST and Tair time-series separated based on approximate overpass times of 

MODIS-Aqua for seven years between 2007 to 2013, where each scatterplot shows MODIS-Aqua daytime (right-

up) and MODIS-Aqua night time (right-down) and also MODIS-Aqua day and nighttime observations (left up and 

down plots) plotted against Tair measurements at the corresponding times for urban LCT with P-value <0.01. DOY 

means day of year 

 

 
 

Figure 8: Scatter plots between observed Tair (Tday and Tnight) and LST from Four MODIS products (MODday, 

MoDnight, MYDday, MYDnight) which are represented for three different LC/LU for considered year (2007 to 2013). 

RMSD is the Root-Mean_Squar Deviation and it’s calculated as the same as RMSE. R
2
 is adjusted correlation 

coefficient between Tair and TS. Tsis land surface temperature 

 

Both Aqua and Terra LSTnight underestimated the Tnight as well except for forest. Moreover, according 

to RMSD from Table 3-5 and MODIS LST from Terra, a higher RMSDs is found for industrial and 

airport LC types during night time which indicates the UHI phenomena (with RMSD = 4.57°C and 

4.32°C respectively). Moreover Table 3-5 show that, correlations between the MODIS LST from Terra 

data are generally stronger from the daytime series compared with those from the night series, except 
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for needle leaf trees. The needle leaf tree type showed more complex correlation patterns from day 

and night observations. The possible reason for this, is that the values of LST recorded by MODIS 

observation on this particular LC type is not exactly a representative of the skin temperature of the soil, 

but rather affected by the temperature near the top of the trees (canopy temperature). In addition, LST 

and Tair are correlated to a certain degree, with some drawbacks depending on factors, such as land 

cover type (Jin et al., 2010; Mildrexler et al., 2011). In general, Figure 2-7 show that the time-series of 

the MODIS LST over six LC/ LU classes were correlated individually during the day and night time. 

They are highly correlated with R
2
 > 0.80. Moreover, Figure 2-7 show that, during the warm months 

the LSTday is higher than Tday due to strong radiation, while as expected during the cold months LSTday 

is lower than Tday for almost all LC/LU. Moreover, almost for all LC/LU, the LSTnight is close to Tnight. As 

due to long wave, radiation from surface LST and Tair at night are closer. 

 

 
 

Figure 9: Scatter plots between observed Tair (Tday and Tnight) and LST from Four MODIS products (MODday, 

MoDnight, MYDday, MYDnight) which are represented for three different LC/LU for considered year (2007 to 2013). 

RMSD is the Root-Mean_Squar Deviation and it’s calculated as the same as RMSE. R2 is adjusted correlation 

coefficient between Tair and TS. Tsis land surface temperature 

 

Both the Terra and Aqua LST products were compared with the ground-based Tair as shown in the 

Figure 8 and 9, the night time LST datasets (MODnight and MYDnight) and the observed Tair are more 

linearly concentrated along the fitting line than the daytime datasets. Strong correlations were 

observed between the night time LST and Tnight with minimal bias (0.81<R
2
 <0.89, RMSE< 4.80 and 

MBE < 2.91 °C). Specifically, the MYDnight tends to be more accurate for the estimation of Tair with 

lower intercepts, smaller RMSD and MBE than MODnight. For Tday, the MYDday had good agreement 

than MODday with lower intercept. This is most likely because the Aqua overpass time (1:30 the time 

when maximum temperature was recorded). However, LST from Aqua and Terra seems to be best for 

estimation of Tday among the LST products. 

 

To sum up, the relationship between LST and Tair may vary with time and location because the land 

surface energy balance is a complex phenomenon that depends on multiple factors (e.g., cloud cover, 

surface roughness, wind speed and soil moisture). In addition, the LST and Tair are different in 

principle. The satellite remotely sensed LST is a measure of the surface radiation. LST was calculated 

from the emissivity’s surface, which is sensitive to LC, especially during daytime and another reason is 

the heat capacity or specific heat of LC. However, the specific heat varies significantly from one LC to 

another. The variation of the difference between LSTday and T day may be due to the different heat 

capacities or specific heats of LC types (Marzban et al., 2017, Voogt and Oke, 2003). The heat 



IJARSG– An Open Access Journal (ISSN 2320 – 0243)  

 

International Journal of Advanced Remote Sensing and GIS 2501 

 
 

 

capacity changes with temperature, which may result in different relations at the different times even 

over the same LC. Our results showed that the MODIS LST correlates best with Tair measurement 

during the daytime. To some extent, this outcome was contradictory to the other works in the literature 

(e.g., Zhang et al., 2011a; Benali et al., 2012, Marzban et al., 2017) where they have reported a 

stronger correlation at night time compared to daytime. It must be noted, though, that Benali et al. 

(2012) used MODIS-Terra but not MODIS-Aqua observations. Variations in the MODIS, overpasses 

time in its 16-day repeated cycle which enabled us to reconstruct the diurnal LST profile over a 7 years 

period. Although, many studies have shown a higher agreement between LST and Tair at night (Zhang 

et al., 2011a; Benali et al., 2012), this is not the case for all hours of the day or night. During some 

hours of the night the LST - Tair relationship is weaker than some hours during the day. These 

differences could be understood, as not only being the time of observation, but also geographical 

location affecting the relationship between LST product and Tair and therefore, affecting the accuracy 

estimation of Tair based on LST products. 

 

 
 

Figure 10: Variation of the correlation coefficient between Tday, Tnight and LST with the varying spatial window size 

over six LCT 

 

 
 

Figure 11: Bar plot of estimated T2m versus measured temperature during day and nighttime in test phases using 

SA-SVR, ANFIS and NN for (a) urban and (b) Needle leaf trees LCT 
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Figure 12: Bar plot of estimated T2m versus measured temperature during day and nighttime in test phases using 

SA-SVR,ANFIS and NN for (a) Industrial and (b) Airport LCT 

 

 
 

Figure 13: Bar plot of estimated T2m versus measured temperature during day and nighttime in test phases using 

SA-SVR, ANFIS and NN for (a) Agriculture and (b) Forest LCT 

 

5.2. Multiple LST window size 

 

The relationship between the observed Tnight –Tday and LST is not limited to a single pixel, because the 

temperature of the near-surface air mass in a given area, is influenced by many factors such as 

energy exchanges with the land surface over a larger area. On the other hand, the Tair is impressed by 

both the local radiation budget and air advection from the surrounding areas, thus, for better 

understanding of the spatial variability in LST- Tair relationship, a spatial window with a varying size is 

examined to discover the optimal spatial extent over which LST agrees best with the Tair 
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measurements. In order to describe the effects of LST window-size on the LST and Tair relationship 

better, firstly, the time-series of LST from a single pixel (1x1 window size) overlapping each weather 

station were retrieved from the MODIS LST grid and then the LST of 3x3, 5x5, 7x7, 9x9, 11x11, 13x13 

and 15x15 pixels were generated, respectively. Secondly, in order to determine the proper spatial 

window size for estimating air temperature, correlation coefficient analysis was made for different 

LC/LU. As shown in figure 8, the correlations were improved very slightly when the window size was 

increased from 1 to 3 pixels for daytime. The highest correlation values were achieved with 3x3 

window for all LC/LU during the daytime and at the 1x1 during the night time. Significance levels of all 

correlations were found to be at which can be interpreted from p-values (all p-values were <0.01). 

According to these results, the window size was selected for all LC/LU prior to model development for 

day and night time data set. 

 

 
 

Figure 14: This two subplots show the effect of K-fold cross validation (with k=4) in three models. In subplot (a) x 

and y-axes show the average of cross validation error (RMSE) and number of nodes in hidden layer in testing 

phase respectively. In subplot (b), x and y-axes show the type of model and the average of cross validation error 

(RMSE) in three models respectively 

 

5.3. Discussion 

 

Three different methods namely SA_SVR, ANN and ANFIS were employed to estimate Tair during the 

day and night time in Berlin by using the twelve variables as predictors. The performance of the three 

models was assessed using cross-validation with k=4 fold over different LC/LU during the day and 

night time. All samples from each LC/LU were used in turn as the validation data set to test the model, 

while the remaining samples were used as the training data set to fit the model. RMSE, R
2
, MBE and 

MAE were calculated from the measured and estimated Tair values to assess model performance. As 

shown in Table 6-11, ANN model with three layers structure, has higher adjusted R
2
 value ranged from 

0.93 to 0.97, RMSE ranged from 1.83 °C to 2.53 °C and MAE ranged from 1.53 °C to 1.94 °C in test 

phases for all LC/LU for estimating Tday. The results showed that all models have similar capability in 

the training phase for estimating Tnight but the ANN has a higher adjusted R
2
 which ranged from 0.89 to 

0.93, RMSE and ranged from 2.13 °C to 2.35°C and also MAE ranged from 1.54 °C to 1.84 °C values 

in the test phase in comparison to ANFIS and SA-SVR. The bar plots of RMSE for the three methods 

on testing data for each LC/LU are shown in Figure 11-13, respectively. As shown in Table 6-11 and 

Figure 11-13, the three models SA-SVR, ANFIS and ANN have satisfactory been able to capture the 
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relationship between the process variables. The bar plots depicted the performance of the NN model 

on the testing data which was better than those of ANFIS and SA-SVR models for the whole of LC/LU 

during the day and night time, but again we applied a CV approach to assess the models performance 

in the test phase for the three mentioned models. As can be seen from Figure 14 (b), the SA-SVR and 

NN models are more robust and stable than ANFIS model regarding their SD values (ranged from 0.03 

to 0.08) during the day and night time and we can say that, these two models are more reliable than 

the ANFIS model. 
 

 
 

Figure 15: Q-Q diagram of estimated T2m versus measured temperature during daytime for Industrial LCT using 

SA-SVR, ANFIS and ANN in testing phase 

 

Table 6: Statistic indices between estimated Tday values obtained by SA-SVR and measured value from 

meteorological stationover six LCT in test phase 

 

LCT RMSE MAE MBE R2 

Agriculture 2.62 2 0.13 0.92 

Forest 2.31 1.84 0.06 0.91 

Industrial 2.79 2.12 0.09 0.91 

Urban 2.46 1.89 0.13 0.92 

Airport 2.41 1.87 0.02 0.92 

Needleleaf trees 2.42 1.85 0.09 0.93 

 

Moreover, in order to find the optimum number of neurons in hidden layer, various numbers of neurons 

are used in the MLP and the optimum number of hidden neurons is determined using the CV approach 

to get the configuration that minimizes the RMSE in the test phase. Figure 14 (a) shows that after a 

certain number of hidden neurons are added, the model will start over fitting our data and give bad 

estimates on the test set. This indicates that over fitting starts to occur when the number of neurons is 

greater than 30, and in this point the model has lowest RMSE, and obviously we can conclude that the 

optimal number of hidden neurons should be 30, but if we consider the error bar which is the indicator 

of standard deviation, the less variation was observed at point 40, and then we can say that the model 

is more stable at this point as compared to point 30 (which is the number of neurons). 
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Table 7: Statistic indices between estimated Tday values obtained by SA-SVR and measured value from 

meteorological station over six LCT in test phase 

 

LCT RMSE MAE MBE R2 

Agriculture 2.62 1.87 0.26 0.88 

Forest 2.42 1.67 0.20 0.88 

Industrial 2.54 1.84 0.16 0.89 

Urban 2.56 1.87 0.16 0.89 

Airport 2.07 1.49 0.16 0.92 

Needleleaf trees 2.28 1.61 0.18 0.91 

  

Table 8: Statistic indices between estimated Tday values obtained by ANFIS and measured value from 

meteorological station over six LCT in test phase 

 

LCT RMSE MAE MBE R2 

Agriculture 2.85 2.21 0.12 0.91 

Forest 2.64 2.08 0.69 0.90 

Industrial 3.70 2.78 0.17 0.88 

Urban 2.74 2.03 0.35 0.90 

Airport 2.75 2.08 0.36 0.90 

Needleleaf trees 2.64 2.06 0.24 0.90 

 

Table 9: Statistic indices between estimated Tnight values obtained by ANFIS and measured value from 

meteorological station over six LCT in test phase 

 

LCT RMSE MAE MBE R2 

Agriculture 3.15 2.40 -0.06 0.84 

Forest 1.98 1.45 -0.04 0.92 

Industrial 2.68 1.91 0.19 0.88 

Urban 2.38 1.72 -0.18 0.90 

Airport 2.33 1.69 -0.16 0.90 

Needleleaf trees 2.28 1.65 0.50 0.92 

 

Table 10: Statistic indices between estimated Tday values obtained by ANN and measured value from 

meteorological station over six LCT in test phase 

 

LCT RMSE MAE MBE R2 

Agriculture 2.28 1.82 0.05 0.97 

Forest 1.83 1.54 -0.29 0.97 

Industrial 2.53 1.94 -0.102 0.93 

Urban 2.13 1.62 -0.07 0.97 

Airport 2.14 1.69 0.06 0.95 

Needleleaf trees 2.08 1.57 0.14 0.95 

 

Moreover, Figure 15 shows Q-Q diagram of SA-SVR (left), ANFIS (middle) and ANN (right) models. Q-

Q diagrams are often used to determine whether the model could extract the behavior of the observed 

data (Chambers et al., 1983). As shown in Figure 15, the models cannot estimate the high 

temperature for all LC/LU during the day and night time. The weak performance of all models at high 

temperature are a consequence of a small number of data in these temperatures, and this is also 

highly related to the study area condition (Berlin) which has a short summer and has only a few 

number of high temperatures. In these cases, the learning algorithm of the three mentioned models 
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have the tendency to underestimate the temperature. Therefore, the generalization of these models for 

the high temperature is reduced. 

 

Table 11: Statistic indices between estimated Tnight values obtained by ANN and measured value from 

meteorological station over six LCT in test phase 

 

LCT RMSE MAE MBE R2 

Agriculture 2.15 1.59 0.16 0.90 

Forest 2.15 1.54 -0.01 0.89 

Industrial 2.34 1.73 0.03 0.91 

Urban 2.35 1.81 -0.06 0.93 

Airport 2.35 1.84 0.10 0.92 

Needleleaf trees 2.13 1.55 0.06 0.92 

 

6. Conclusions 

 

In this study, the comparison between the LST and Tair observations was done. The comparison 

shows that LSTday and LSTnight from both Terra and Aqua, with the mean relative bias above and under 

zero tended to overestimate Tday and underestimate Tnight respectively, and also a higher relative 

RMSD and bias values were seen for the Aqua LSTdaytime than the Terra LSTdaytime which might be 

given the fact that more solar radiation has been received at the time of the aqua MODIS overpass 

later in the day. The scatterplots of LSTnight and Tnight from Aqua for industrial LC/LU has higher 

scattering than daytime observations which are more spread around the 1:1 line (Figure 4). This 

indicates UHI phenomena with RMSD = 4.21°C. Moreover, according to RMSD from Table 3-5 and 

MODIS LST from Terra, a higher RMSDs is found for industrial and airport LC/LU types during the 

night time which indicated the UHI phenomena (with RMSD= 4.57°C and 4.32°C respectively). The 

results show that, the correlations between the MODIS LST from Terra data are generally stronger 

from the daytime series compared with those from the night time series except for needle leaf trees. 

The needle leaf tree type showed a more complex correlation pattern from day and night observations. 

The reason is that the values of LST recorded by MODIS observation on this particular LC type is not 

exactly a representative of the skin temperature of the soil, but rather affected by the temperature near 

the top of the trees. In general, the results showed that the time-series of the MODIS LST over six 

LC/LU classes were correlated individually during the day and night time. They are highly correlated 

with r > 0.80. In addition, the results indicate that, during the warm months the LSTday is higher than 

Tday while as expected during cold months LSTday is lower than Tday for almost all LC/LU. Moreover, for 

almost all LC/LU, the LSTnight is close to Tnight. Overall, the relationship between LST and Tair is varied 

with time and location because the land surface energy balance is a complex phenomenon that 

depends on multiple factors (e.g., cloud cover, surface roughness, wind speed and soil moisture). In 

the other words, The LST–Tair relationship is mainly controlled by the surface energy balance, but it 

also depends on factors that are closely linked to energy processes (Prince et al., 1998; Zhang et al., 

2015). 

 

Moreover, in this study, the air temperature during the day and night time in the period from 2007 to 

2013 was estimated for the Berlin area over six LC/LU, using 1 km Aqua and Terra/MODIS data. The 

correlation coefficient between observed Tair and remotely sensed LST shows an increasing trend, with 

a spatial window size increasing from 1 km × 1 km to 3 km × 3 km, and subsequently decreasing 

slightly at window sizes larger than 3 km × 3 km for the daytime, but for the night time this correlation 

coefficient between observed Tair and LST showed a decreasing trend, with spatial window size from 1 

km × 1 km to 13 km × 13 km, and subsequently decreasing slightly at window sizes larger than 1 km × 

1 km. These window sizes were therefore used to spatially average five satellite-derived environmental 
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variables, (NDVI, Albedo, Emissivity31, Emissivity32) which were used as predictors of Tair in the three 

models. 

 

In addition, a difficult task with ANN involves choosing the hidden nodes’ number. Here, the ANN with 

one layer was used and the hidden nodes’ number was determined using error and trials. For the 

ANFIS model, Gaussian membership function (MF) and 250 iterations were used. Different number of 

membership functions were tested and the best of which gave the minimum RMSE and was selected, 

which was 4 MFs for each variable. For the adjustment, the parameter in SVR model, the simulated 

annealing was applied. The ANN, ANFIs and SA-SVR models are compared in the test phase based 

on Table 6-11. The ANN model, among the six LC/LU during the day and night time performed better 

than the two other models with RMSE which ranged from 1.83°C to 2.53°C and from 2.13°C to 2.35°C 

during the day and night time respectively. The RMSE of SA-SVR model is ranged from 2.07 to 2.79 

°C during the day and night time over six LC/LU and also the highest RMSE was observed in the 

ANFIS model with a range from 2.64°C to 3.70°C during the day and night time over six LC/LU. These 

results indicated that the ANN model out performs the SA-SVR and ANFIS models for almost whole 

LC/LU during the day and night time, but based on Figure 14 and the cross-validation results, the SA-

SVR and ANN models out performs the ANFIS model. Moreover, the results showed that there was a 

high similarity between the training and testing table which demonstrates that the over-fitting has not 

been occurred in the SA-SVR, ANFIS and ANN. The Q-Q diagram of SA-SVR, ANFIS and ANN shows 

that all three models slightly tended to underestimate and overestimate the extreme and low 

temperature for all LC/LU during the day and night time. The weak performance in the extreme and 

low temperature are a consequence of a small number of data in these temperatures. In these cases, 

the generalization of these models reduce for estimating the high and low temperature. In addition, 

despite moderate to high correlations between LST and Tair, LST cannot be directly used for estimating 

air temperature due to the large difference in MBE (Table 3-5), while by applying some additional 

parameters, in three models (Table 6-11), It can be seen that the MBE was reduced notably, in all 

LC/LU during day and night time. 

 

Moreover, prediction of long-term monthly air temperature using ANFIS and ANN had been done in 

the study of Kisi and Shiri (2014). They applied station latitude, longitude and altitude values as input 

variable to predict the long-term monthly temperature values. They found that the ANN models 

generally performed better than the ANFIS model in the test period. The ANN models generally 

performed better than the ANFIS model in the test period and they found that for the ANN model, the 

maximum and minimum determination coefficient values were between 0.921 and 0.995. The 

maximum and minimum determination coefficient values were found as 0.99 and 0.876 for the ANFIS 

model in different stations. Testing results of the ANN and ANFIS models in the study of Kisi and Shiri 

(2014) show the RMSE values range from 0.1.53 to 4.20◦C and 1.18 ◦C to 9.25◦C for each station, 

respectively. 

 

Moreover, in the study of Xu. et al. (2014), they applied spatially averaged values of LST, NDVI, 

modified normalized difference water index (MNDWI), latitude, longitude, distance to ocean, altitude, 

albedo and solar radiation as predictors of Tair in linear regression and random forest models for 

estimating Tair in summer periods from 2003 to 2012. In their study, prior to model development, they 

also investigated the window size effect on the relationship between LST and Tair. The Cross-validation 

results of their study show that the random forest model (MAE = 2.02°C, R
2
 = 0.74) outperforms the 

linear regression model (MAE = 2.41°C, R
2
 = 0.64) and the distribution of residuals from the random 

forest model slightly overestimates Tair, with a mean residual value of 0.09°C. 
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To sum up, in our study, instead of estimation monthly air temperature and only using the geographical 

input data, we estimate air temperature during day and night. Moreover, different parameters such as 

NDVI, Albedo, relative humidity, wind speed, wind direction and Julian day have been take into 

consideration, which are representative of seasonal changes. The satisfactory results suggested that 

this modelling approach is appropriate for estimating air temperature in Berlin over six different LC/LU. 

In addition, the results indicate that MODIS time series of LST can be successfully combined with 

ground measurements of temperature to produce accurate and more detailed predications of 

temperature during day and night time. Although the air temperature estimated from satellites tends to 

be higher than ground-based measurement, the use of satellite remote sensing data can help to 

overcome the spatial problem of estimating Tair particularly in areas with low station density using 

satellite-based land surface temperature estimation and ground-based relationship between LST and 

Tair. To reduce the biases in satellite-estimated air temperature, it can be effective to use retrieval 

method based on land surface heat budget (e.g. Kato and Yamaguchi, 2005) in future work. 
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