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Abstract Several indices both conventional and satellite based are used in drought monitoring and 

assessment. In this study, a satellite derived Drought Severity Index (DSI) was used to monitor and 

assess the agricultural drought over Andhra Pradesh state, India from 2002 to 2012. The components 

of DSI are the Normalize Difference Vegetation Index (NDVI) and Evapotranspiration. The NDVI and 

evapotranspiration products of MODIS were used in this study to derive the DSI. The DSI is expected 

to capture the drought event that has been reported in the state between 2002 and 2012 and provide a 

quantitative measure of severity. The analysis showed that the DSI was having a larger variance 

during June due to the large variation in the onset of monsoon. The DSI variance was low in the 

predominantly irrigated districts. The spatial cumulative seasonal DSI captured the drought affected 

districts during the reported drought years. When the seasonal cumulative DSI was correlated with 

seasonal rainfall, it showed a strong relation with the current month rainfall in the rainfed crop growing 

districts. The annual DSI showed strong positive correlation with the annual Net Primary Productivity. 

This study clearly shows that the DSI was able to discern the drought affected regions in the state of 

Andhra Pradesh, India during the study period. 
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1. Introduction 

 

Under the changing climate scenario, drought events may become more frequent and severe in nature 

(Dai et al., 2004). Drought is one of the major natural disasters which impair the food production 

leading to unemployment, malnutrition, migration, conflicts and environmental degradation. Though 

prediction of drought is neither accurate nor precise, it is critical to monitor and assess drought through 

timely and reliable weather information, including seasonal forecasts, to aid decision makers. This 

information, if properly applied, can reduce the impact of drought and other extreme climate events 

(Wilhite and Svoboda, 2000). Several indices are used to assess and monitor drought from local to 

global scale. However due to the multi-disciplinary character of drought, a single unique definition of 

drought does not exist; but is subject to the domain of interest of the observer (Wilhite and Glantz, 

1985; Maracchi and Sivakumar, 2000; Tate and Gustard, 2000). Drought indices may use parameters 

which are meteorological, hydrological, spectral, agricultural and social in nature. Ideally, a drought 

index integrates large amounts of data, such as precipitation, snowpack, stream flow and other water 

supply indicators, to monitor drought severity in a comprehensive framework and to measure how 

much the climate in a given period has deviated from historically established normal condition 

Research Article 

https://doi.org/10.23953/cloud.ijarsg.299


IJARSG– An Open Access Journal (ISSN 2320 – 0243)  

 

International Journal of Advanced Remote Sensing and GIS 2344 

 
 

 

(Narasimhan and Srinivasan, 2005; Mu et al., 2013). The American Meteorological Society (1997) 

suggests that the time and space processes of supply and demand are the two basic processes that 

should be included in an objective definition of drought and thus, in the derivation of a drought index 

(Heim, 2002). Mu et al. (2013) reviewed various drought indices like Palmer Drought Severity Index 

(PDSI) (Palmer 1965; Alley, 1984), United States Drought Monitor (USDM) (Svoboda, 2002), and 

Evaporative Drought Index (EDI) among other indices. The relative strengths and weaknesses of 

these indices were discussed and concluded that most of them were designed to detect 

meteorological and/or hydrological drought without incorporating vegetation responses into drought. 

Except the USDM and the EDI which use both reanalysis meteorological data and remotely sensed 

data (Svoboda et al., 2002; Yao et al., 2010), most drought indices use reanalysis meteorological data 

that contain substantial uncertainties (Zhao et al., 2006; Chen and Bosilovich, 2007; Gao et al., 2010; 

Mu et al., 2013). To overcome these limitations, Mu et al. (2013) developed a remotely sensed global 

Drought Severity Index (DSI). DSI was derived using satellite derive Evapotranspiration (ET), Potential 

Evapotranspiration (PET) and Normalized Difference Vegetation Index (NDVI) to identify and monitor 

drought.  

 

In India, organizations like the Central Research Institute for Dry Land Agriculture (CRIDA), 

Hyderabad, provide information on drought conditions and their mitigation measures during the 

season. The India Meteorological Department monitors the meteorological parameter while the Central 

Water Commission provides the latest storage status of the major water bodies of the country. A 

project called National Agricultural Drought Assessment and Monitoring System (NADAMS), 

operational since 1989 and presently being carried out by Mahalanobis National Crop Forecast Centre 

(www.ncfc.gov.in) has been using satellite derived indices like NDVI, Normalized Difference Water 

Index (NDWI), Vegetation Condition Index (VCI), meteorological, crop and field parameters to provide 

agricultural drought information in terms of prevalence, severity and persistence at state, district and 

sub-district level for India. However, development of a unified index for drought severity assessment 

by integrating data from different sources is an important challenge. Use of a process based indicator 

like the DSI which describes the actual process taking place on the ground will provide the realistic 

condition of the crops in the field. Towards this objective the DSI proposed by Mu et al. (2013) was 

used to monitor the drought condition in the state of Andhra Pradesh, India during the time period of 

2002-2012. The DSI will be evaluated on how best it is able to identify the reported drought year 

between 2002-2012, quantify the severity of drought and address the drought in a near real time basis. 

It was also envisaged to find the relation between the DSI with the monthly rainfall and Net Primary 

Productivity over the study area. 

 

1.1. Study Area and Data Used 

 

Study Area 

 

The region chosen for this study is the erstwhile state of Andhra Pradesh in India presently bifurcated 

into two states namely Andhra Pradesh and Telangana. For this study the two states Andhra Pradesh 

and Telangana will be called with its erstwhile name of Andhra Pradesh. The Andhra Pradesh state 

had a total geographical area of 27.44 million hectares. It has a vegetation types ranging from the 

forested districts in the north to the dry arid districts in the south offering diverse agro-climatic 

condition. The state gets its major share of rainfall (68.5%) during the four southwest monsoon months 

(June to September). The southern arid district received as low as 300 mm while the northern forested 

districts receive over 1000 mm of rainfall during the monsoon. The majority of the crops (65% of the 

13.02 million hectare) that are grown during the monsoon season rely on the monsoon rainfall for its 

sustenance (Mishra, 2005). Almost 45% of the state is prone to drought according to Seth (1998).  
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This study uses the districts of this state as the study unit which is approximately 4000-5000 km². 

Some of the major crops grown in the state are paddy, groundnut, cotton, chilli, maize and millets 

among other crops. Figure 1 shows the study area of the erstwhile state of Andhra Pradesh, India. 

 

 
 

Figure 1: Study area - the erstwhile state of Andhra Pradesh, India 

 

1.2. The Normalized Difference Vegetation Index 

 

The Normalized Difference Vegetation Index (NDVI) is the most widely used vegetation index for its 

long legacy, simplicity and robustness. It has been extensively used for assessing and monitoring 

vegetation dynamics, biomass production, changes in vegetation conditions and many more (Tucker et 

al., 1985; Hielkema et al., 1986; Prince and Tucker, 1986; Kogan, 1990). The Moderate Resolution 

Imaging Spectroradiometer (MODIS) sensor onboard Terra and Aqua satellite has been providing 

spectral information in 36 spectral bands since 1999 and 2002 respectively. MODIS Vegetation Index 

16 day’s products at multiple spatial resolutions have been providing consistent spatial and temporal 

information on vegetation canopy greenness, canopy structure and other biophysical parameters. This 

study uses the Terra MODIS Vegetation Index (VI) 16 day (MOD13A2) products for its analysis. The 

theoretical basis, algorithm description, product specification and quality assurance of the MODIS VI 

product is provided in the MODIS Vegetation Index User Guide (Didan et al., 2015) 

(http://vip.arizona.edu). The VI products downloaded from LADDS DAAC 

(https://ladsweb.nascom.nasa.gov) web page were processed using the open source software (QGIS), 

to derive the NDVI. The cloud contaminated and erroneous pixels were eliminated by using the quality 

assurance flag of NDVI. The NDVI data from the first fortnight of June 2002 till the second fortnight of 

April 2013 were used in the analysis.  
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1.3. Evapotranspiration  

 

The amount of water lost to the atmosphere from the soil surface as evaporation and through 

vegetation as transpiration combined together is called Evapotranspiration (ET). Evapotranspiration is 

an important component of the hydrological cycle which is responsible for the mass and heat transfer 

into the atmosphere. Since the amount of ET depends on the imbalance in the soil-water-atmospheric 

continuum, it helps in assessing the moisture deficit over a region which in turn will help us in 

assessing the drought condition. This study uses the MODIS Global Terrestrial ET (MOD 16) products 

which were derived using the Mu et al.’s improved ET algorithm (2011). The algorithm theoretical basis 

and the details of the ET product are provided in www.ntsg.umt.edu/project/mod16 web page and also 

in Mu et al. (2007). Mu et al. (2007, 2011) integrated the Penman-Monteith equation (Monteith, 1965) 

with the Priestley-Taylor (1972) method to estimate the Potential Evapotranspiration, while the global 

remotely sensed actual ET was derived using the Penman-Monteith equations. The main input 

parameter for the Penman-Monteith equations are the meteorological variables, remotely sensed 

vegetation parameter of Leaf Area Index (LAI) (Myneni et al., 2002), fraction of photo synthetically 

active radiation (FPAR) (Los et al., 2000). It provides the day and night cumulative ET estimates.  

 

The limitations with the MOD16 products are i) it uses a static MODIS land cover map, ii) wind and 

precipitation are not used in the calculations of ET, iii) the relative humidity influence on saturated soil 

and standing water and canopy intercepted water are not considered and iv) the meteorological inputs 

to this product is coarse. Several studies have attempted the validation of global evapotranspiration 

product (MOD16) using flux tower and Large Aperture Scintillometer (LAS) measurements (Ramoelo 

et al., 2014; Tang et al., 2015). The results show that the 8-day MOD16 actual ET product tends to 

underestimate at higher ET levels and overestimate at low ET levels. Under irrigated condition MOD16 

tends to underestimate significantly. Though there are limitations in using MOD16 ET data, it provides 

a spatial time series data which is readily available for the entire globe for over a decade. Tang et al. 

(2015) points out that the temporal pattern of ET estimate matches with the LAS and flux tower values. 

In this study the Moisture Adequacy Index (MAI) which is used in the derivation of Drought Severity 

Index (DSI) is the ratio of actual ET to Potential ET. This ratio helps in cancelling out the common error 

in actual ET and PET thus reducing the uncertainty in the MOD16 product for the use in DSI. 

 

1.4. The Gross Primary Production and Net Primary Production  

 

Primary productivity is defined as the rate at which the sun’s energy is transformed into biomass 

through plants photosynthesis or chemosynthesis. The primary productivity can be Gross Primary 

Productivity (GPP) which is the total amount energy converted as biomass which includes the energy 

consumed by the plant for respiration while the Net Primary Productivity (NPP) is the net amount of 

energy consumed by the plant resulting in dry plant biomass. NPP gives an idea on the amount of 

energy that is consumed by the plant resulting in the carbon dioxide assimilation. It represents the 

availability of carbon in the form of plant material for consumption as food, fuel and feed (Abdi et al., 

2014). In this study the MODIS Gross Primary Production (GPP) and Net Primary Production (NPP) 

product (MOD17) were used which provides estimates of vegetation GPP and NPP at consistent 

spatial and temporal resolutions for global vegetated land areas (Running et al., 1999). The algorithm 

theoretical basis and the details of the MOD17 GPP/NPP product can be had from ‘User’s Guide - 

Daily GPP and Annual NPP (MOD17A2/A3) Products, NASA Earth Observing System MODIS Land 

Algorithm (Running and Zhao, 2015) (http://www.ntsg.umt.edu/sites/ntsg.umt.edu/files/ 

modis/MOD17UsersGuide2015_v3.pdf). The MOD17 GPP/NPP product has been widely validated 

and applied to regional and global scales (Turner et al., 2005, 2006; Heinsch et al., 2006; Zhao and 

Running, 2010). It is a known fact that during drought year the NPP is expected to reduce due to  

http://www.ntsg.umt.edu/project/mod16
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abiotic stresses. The MOD17 GPP/NPP product was used in this study for comparison against the DSI 

as a surrogate measure of vegetation activity and associated NPP response to different drought 

scenarios during various time periods.  

 

1.5. Rainfall Data 

 

Rainfall forms an important input for any vegetation and drought studies. In this study, the Climate 

Prediction Centre’s (CPC) RFE2.0 daily accumulation rainfall estimates product was used, which was 

downloaded from its FTP site (ftp://ftp.cpc.ncep.noaa.gov/fews/S.Asia /data/). It provides the southern 

Asian region daily rainfall estimates in millimeters with a resolution of 0.1° x 0.1°. The inputs for the 

rainfall estimate include Global Telecommunication System (GTS) station data, as well as 

geostationary infrared cloud top temperature fields and polar orbiting satellite precipitation estimate 

data from SSM/I and AMSU-B microwave sensors. All satellite data are first combined using a 

maximum likelihood estimation method, and then GTS station data is used to remove bias. Warm 

cloud precipitation estimates are not included in RFE 2.0 estimates (www.cpc.ncep.noaa.gov/ 

products/fews/RFE2.0_desc.shtml). The data was provided in binary format which was imported using 

commercial image processing software and rainfall data was extracted for the Andhra Pradesh state 

and its districts which were used in the analysis. 

 

1.6. The Drought Severity Index 

 

The remotely sensed Drought Severity Index (DSI) has two components namely 1. The vegetation 

condition component which helps in detecting the vegetation health and vigour and 2. The 

evapotranspiration deficit component which helps in detecting the moisture stress in the crop. Since 

the causative and the manifestation indicators are combined in a single index called the DSI, it clearly 

helps in addressing the drought holistically.  

 

For the vegetation health/vigour monitoring purpose, MODIS Vegetation Index has been used. The 

long term VI data (2002-2012) was used to drive the standardized NDVI (ZNDVI) also called the 

Standardized Vegetation Index (SVI) for each composite period (monthly) during the classified growing 

season at each grid cell which is given in equation 1. 

 

      
          

     
   … (1) 

 

The SVI allows visualization of relative vegetation greenness in terms of ‘greenness probability’ 

through the use of a probability estimate, which suggests comparison over time periods that are longer 

than the archival imagery. The value of the SVI ranges between zero and one (0 < SVI < 1). Zero is 

the baseline condition in which a pixel NDVI value is lower than all possible NDVI values for that week 

in other years and vice versa (Peters et al., 2002). 

 

Evapotranspiration has a commanding roll in the transportation of energy and mass into the 

atmosphere. The rate of ET is actually controlled by the vapour pressure deficit in the atmosphere and 

the moisture availability in the soil water reservoir. When the supply component of soil water is 

unlimited the ET takes place at its potential rate which is known as the Potential Evapotranspiration 

(PET). Hence, the ratio of the ET versus the PET can indicate the amount of water stress that exists in 

the region. This ratio of actual ET to PET is also called the Moisture Adequacy Index (MAI) (Drought 

Manual, 2009) which is expressed in percentage. MAI is critical in ascertaining the agricultural drought 

condition. For each monthly period, the ratio of actual ET to PET is derived as given in equation 2. 

 

ftp://ftp.cpc.ncep.noaa.gov/fews/S.Asia /data/
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  … (2) 

 

The temporal standard deviation of MAI ( MAI) and MAI average (MAI) were then computed on a grid 

cell basis over the available satellite record (2002 - 2012). The standardized MAI (ZMAI) was then 

calculated using equation 3. 

 

     
        

    
   … (3) 

 

The standardized NDVI (ZNDVI) and standardized MAI (ZMAI) were summed as given in equation 4 to 

give a Z value. 

 

Z = ZMAI + ZNDVI … (4) 

 

The standardization of the Z value would provide the remotely sensed DSI as given in equation 5. 

 

    
   

 
  … (5) 

 

The DSI ranges from unlimited negative value to positive values. Negative DSI indicating drier 

conditions while positive DSI indicating wetter conditions. It is always suggested that to have 

sufficiently longer database so that the DSI derived represents the realistic ground conditions. 

 

2. Results and Discussion 

 

2.1. Variance of the DSI in the Irrigated and Rainfed Crop Growing Districts 

 

Figure 2a and 2b shows the DSI values during the Kharif season (May to November) plotted for the 

years from  2002 to 2012 for few predominantly irrigated crop growing districts (viz East and West 

Godavari, Krishna and Guntur) and predominantly rainfed crop growing districts (viz. Ananthpur, 

Prakasam, Mahabubnagar and Kurnool) of Andhra Pradesh state respectively. The DSI usually ranges 

between -1.5 to +1.5 where -1.5 indicates extreme drought while +1.5 indicates extremely wet 

conditions. It can be observed from Figure 2a and 2b, that only during the month of June the DSI 

varied widely between -1.5 to +1.5 under both irrigated crop and rainfed crop growing districts. The 

variation of the DSI between maximum and minimum was much less in all the remaining months. The 

large variations of the DSI in the month of June can be attributed to the variation in the onset of 

monsoon and the variations in the amount of rainfall received during this month. Table 1 gives the 

monsoon onset date and rainfall deviation of the three meteorological sub-divisions of Andhra Pradesh 

along with the DSI values of the districts under study. The years 2003, 2009, 2011 and 2012 showed 

negative DSI deviation in all the districts. Though the rainfall received in June 2003 was normal, the 

negative deviation in 2003 was due to the carryover effect of the huge deficit in the previous year’s 

(2002) seasonal rainfall which resulted in drought that year. The previous year’s (2002) seasonal 

rainfall deviation in Coastal Andhra, Telangana and Rayalaseema were -25%, -22 and -33 

respectively. In the years 2009, 2011 and 2012, the majority of the state experienced poor rainfall in 

June resulting in negative DSI. During other months of the season the dynamic range of the DSI was 

not as large as observed during June. It was ranging between -0.5 to +0.5. The variation was the least 

during the month of August followed by July and September. The variation demonstrates that the DSI 

is sensitive to the rainfall during these months.  
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Figure 2a:The DSI during Kharif season from 2001-2012 for predominantly irrigated crop growing districts 

 

 

 
 

Figure 2b: The DSI during Kharif season from 2001-2012 for predominantly irrigated crop growing districts 

 

Figure 3 shows the monthly variance of the DSI, for the typical irrigated and rainfed crop growing 

districts of Andhra Pradesh during 2002-2012. It can be observed that the variance of the DSI was the 

highest during the month of June in both the irrigated and rainfed crop districts. In the irrigated crop 

growing districts the variance of DSI was low in the month of July, August and September in the Kharif 
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season. During Rabi cropping season the variance was low in December, January and February. The 

values of variance among districts were also very close during these periods. The variance of the DSI 

was high during the month of June due to the variation in the onset and amount of monsoon rainfall. 

During the months of October and November, which is the transition period between the Kharif and 

Rabi cropping seasons, the variance increased. The harvest of the Kharif crop takes place during 

these months. Any staggering during the sowing month will also reflect in the harvesting months and 

hence the higher variance in October and November. The variance of the DSI was also high during the 

summer months of March, April and May when there is a large uncertainty in rainfall and crops. 

 

 
 

Figure 3: The variance of the DSI during 2002-2012 for (a) irrigated crop growing district and (b) rainfed crop 

growing districts 

 

Table 1: The monsoon onset dates, rainfall deviations and the DSI during June month for few typical districts 

 

 

The rainfed crop growing districts also showed larger variance in the DSI during the months of June, 

October, and November and during summer months. The low variance was observed in July, August 

and September during Kharif, and in December and January during Rabi. It is clearly seen that the 

coherence of variance values among districts observed during low variance months in irrigated crop 

growing districts was not observed in the rainfed crop growing districts. There was larger variation of 

Year 

Monsoon 

onset day 

over 

Andhra 

Pradesh 

Rainfall deviation during 

June over Met-sub 

divisions of AP 

District average DSI during June 

Rayala

seema 

Telan

gana 

Coastal 

Andhra 

East 

Godavari 

West 

Godavari 

Krishn

a 
Guntur 

Mahabub

nagar 
Kurnool 

Prakasa

m 

Ananth

pur 

2002 

2003 

2004 

2005 

2006 

2007 

2008 

2009 

2010 

2011 

2012 

10th June 

15th June 

10th June 

21st June 

24th June 

14th June 

10th June 

26th June 

14th June 

16th June 

18th June 

31 

20 

-53 

-1 

57 

285 

-35 

5 

57 

-24 

-48 

2 

-11 

-55 

-26 

-24 

26 

-8 

-52 

-24 

-41 

-14 

7 

-5 

9 

-22 

15 

159 

-16 

-46 

39 

-27 

-22 

0.687 

-1.183 

-0.437 

0.438 

0.774 

0.762 

0.440 

-0.428 

0.469 

-0.210 

-1.146 

0.424 

-1.393 

0.436 

0.609 

1.089 

0.902 

-0.155 

-0.514 

0.405 

-0.447 

-1.327 

-0.002 

-1.225 

0.894 

-0.166 

1.131 

0.940 

-0.368 

-0.333 

-0.071 

-0.474 

-1.144 

-0.171 

-0.983 

1.102 

-0.452 

1.299 

1.156 

-0.719 

-0.289 

-0.061 

-0.372 

-1.199 

0.517 

-0.782 

0.499 

-1.061 

0.898 

1.176 

-0.315 

-0.664 

0.036 

-0.780 

-1.309 

-0.312 

-0.645 

1.196 

-0.329 

0.538 

0.459 

-0.269 

-0.437 

-0.316 

-0.742 

-1.347 

0.017 

-1.330 

1.045 

-0.614 

0.857 

1.118 

-0.662 

-0.082 

0.230 

-0.457 

-1.216 

-0.003 

-1.255 

1.222 

0.615 

0.024 

0.757 

-0.697 

-0.086 

-0.237 

-0.572 

-1.369 
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variance among the district throughout the season. This analysis demonstrates that the DSI is 

sensitive to the variations in the onset of monsoon and the amount of rainfall received during each 

month, which results in variations in the NDVI and the evapotranspiration. It also clearly distinguishes 

between the irrigated crop growing districts which has lower DSI variance and rainfed crop growing 

districts by registering larger variance during the cropping season. 

 

2.2. Response of the DSI to Rainfall 

 

Since the DSI was found to be sensitive to the onset of monsoon rainfall and had a greater variance in 

the rainfed crop growing districts, it was appropriate to establish the strength of relationship between 

the rainfall and the DSI. A correlation analysis was carried out between the rainfall and the DSI from 

the year 2002 to 2012. Table 2 shows the district wise correlation of the DSI to the rainfall of the 

current month and the previous month. It was observed that the DSI had a higher correlation with the 

current month rainfall when compared with the previous month rainfall. The SVI which is one of the two 

components of the DSI is a function of the NDVI. It is proven that the NDVI as a standalone index has 

a lagged response to rainfall. In a study over Andhra Pradesh on a satellite based NDVI response to 

rainfall, the NDVI lags rainfall by two months in most of the districts (Chandrasekar et al., 2006).  

 

Table 2: Correlation between DSI vs current and one month lagged rainfall 

 

S. No. Districts 
Correlation coefficient Percent irrigated 

cropped area Current Rainfall One month Lag 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

Adilabad 

Ananthpur 

Chittoor 

Cuddapah 

East Godavari 

Guntur 

Karimnagar 

Khammam 

Krishna 

Kurnool 

Mahabubnagar 

Medak 

Nalgonda 

Nellore 

Nizamabad 

Prakasam 

Rangareddy 

Srikakulam 

Vishakhapatnam 

Vizianagaram 

Warangal 

West Godavari 

0.711 

0.791 

0.717 

0.757 

0.528 

0.488 

0.744 

0.691 

0.600 

0.777 

0.724 

0.745 

0.643 

0.629 

0.757 

0.623 

0.681 

0.646 

0.643 

0.791 

0.745 

0.550 

0.167 

0.324 

0.143 

0.000 

0.127 

0.295 

0.153 

0.163 

0.392 

0.041 

0.315 

0.298 

0.292 

0.061 

0.138 

0.144 

0.407 

-0.102 

0.094 

0.050 

0.160 

0.338 

17.94 

15.93 

47.51 

41.80 

60.35 

63.79 

83.20 

47.77 

51.05 

29.79 

38.73 

43.24 

61.13 

78.98 

88.04 

36.85 

41.19 

50.33 

39.98 

44.18 

72.03 

85.94 

 

However, the SVI is an estimate of the ‘probability of occurrence’ of the present vegetation condition. 

Peters et al. (2002) in a study over the Great Plains states from North Dakota to Texas compared the 

SVI with the US Drought Monitor (DM) outputs and found that the SVI reflects short-term vegetative 

response to weather conditions while the DM maps show both short term and long-term drought 

conditions. The SVI map will show areas of relatively good or poor vegetation status and will show 
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changes more quickly than the DM maps. This could be the reason for the immediate response of the 

DSI to rainfall despite having the NDVI as a component. The highly irrigated delta districts of Guntur 

(r=0.488), Krishna (r=0.60), East Godavari (r=0.528) and West Godavari (r=0.55) were having low 

correlation coefficients. Since these delta districts are in the tail reach of the river basin, the reservoirs 

which supply irrigation water get filled up with a lag. Because of this the irrigated crop calendars in 

these districts have a lag with monsoon rainfall and hence the poor relation with rainfall. 

 

Figure 4 shows the cumulative DSI (June to November) of the state of Andhra Pradesh from 2002 to 

2012. It can be observed from the Figure 4 that the DSI was negative in most of the districts of the 

state in the years 2002, 2003, 2009, 2011 and 2012. Based on the analysis of historic rainfall it was 

found that the years 2002, 2003, 2009, 2011 and 2012 were meteorological drought years with 

deficient rainfall. In all the other years the DSI was positive if the districts had experienced normal to 

excess rainfall.  

 

 

 
 

Figure 4: Cumulative DSI (Jun-Nov) of Kharif cropping season in the state of Andhra Pradesh 

 

The district average cumulative DSI was extracted for each district for all the years under study and 

was plotted against the district cumulative rainfall of the corresponding period. It can be observed from 

Figure 5a & 5b that whenever there is deficient cumulative rainfall during the season there is a 

negative DSI and vice versa. The conformity between the positive or negative cumulative rainfall 

events to the positive or negative cumulative DSI respectively is more pronounced in the rainfed crop 

growing districts (Figure 5b) rather than in the irrigated crop growing districts (Figure 5a). This clearly 

brings out that the DSI is sensitive to the rainfall events. 
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Figure 5a: Cumulative rainfall plotted against cumulative DSI during Kharif cropping season (Jun-Nov) in irrigated 

crop growing districts 

 

 
 

Figure 5b: Cumulative rainfall plotted against cumulative DSI during Kharif cropping season (Jun-Nov) in rainfed 

crop growing districts 

 

2.3. Relation between the DSI and the NPP 

 

The Net Primary Productivity (NPP) refers to the production of organic compounds from atmospheric 

or aquatic carbon dioxide (CO2) by plants, principally through the process of photosynthesis 

(photosynthesis minus autotrophic respiration) (Pei et al., 2013). Studies by Zhao and Running (2010) 

showed that large-scale drought events have reduced the global NPP. Xiao et al. (2009) have found 

that most of the drought events which occurred in China had reduced the NPP and the Net Ecosystem 

Productivity (NEP) in large parts of the drought affected areas. Extreme droughts can impact the 

terrestrial productivity in a significant way and can reduce the sink strength at sub-continental scale 
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(Ciais et al., 2005; Reichstein et al., 2007; van der Molen et al., 2011). Since the NPP is directly 

related to drought, it was found appropriate to find the relation between the DSI and the NPP over the 

study area. This study used the MOD17 GPP/NPP product as a surrogate measure of vegetation 

activity/productivity and associated the NPP response to drought, for comparison against the DSI. The 

DSI and the NPP results should be correlated, especially for water supply-constrained regions 

(Nemani et al., 2003) through vegetation moisture constraints on canopy transpiration; net 

photosynthesis and CO2 exchange (Mu et al. 2013). 

 

Figure 6a and 6b shows the plot of the annual DSI along with the annual NPP of few typical districts of 

the study area. It can be observed that the DSI closely followed the annual NPP for all the years 

except 2011. The DSI was having low negative values during 2002, 2003, 2009 and 2012 and the 

annual NPP was also low during these years compared to its mean for each district. The annual NPP 

during a good monsoon year was above 0.7 PgC/year for the irrigated crop growing districts while it 

was around 0.5 PgC/yr for the rainfed crop growing districts. The higher annual DSI did not always 

result in higher NPP on the contrary lower negative annual DSI consistently resulted in lower annual 

NPP irrespective of whether it was an irrigated or rainfed crop growing district.  
 

 
 

Figure 6a:Annual DSI and corresponding NPP in irrigated crop growing districts of Andhra Pradesh 
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Figure 6b: Annual DSI and corresponding NPP in rainfed crop growing districts of Andhra Pradesh 

 

Table 3 shows the correlation coefficient of the annual DSI against the annual NPP. It can be observed 

that most of the districts were having strong relation between the DSI and the NPP. The correlation 

coefficient was the highest in the districts of Ananthpur (0.88), Khammam (0.78), Kurnool (0.77), 

Adilabad (0.75), Rangareddy (0.74), Vizianagaram (0.74), Medak (0.73) and Chittoor (0.72). Majority 

of the cropped area in these districts are rainfed crop as the percent irrigated cropped area was less 

than 50% of the total cropped area (Table 3). The low correlation coefficient was observed in the 

districts of Prakasam (0.39) and Nellore (0.46) as these two districts are predominantly northeast 

monsoon (October to December) dependent districts. The DSI has also captured all the reported 

drought years which are 2002, 2003, 2009 and 2012. The DSI recorded the negative values in all 

these years in all these districts. This clearly indicates that the DSI was able to discern the drought 

year very clearly in the state of Andhra Pradesh. 
 

Table 3: Correlation coefficient of annual DSI versus annual NPP 

 

S. No. Districts NPP % Irrigated cropped area 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

Adilabad 

Ananthpur 

Chittoor 

Cuddapah 

East Godavari 

Guntur 

Karimnagar 

Khammam 

Krishna 

Kurnool 

Mahabubnagar 

Medak 

Nalgonda 

0.75 

0.88 

0.72 

0.65 

0.62 

0.62 

0.51 

0.78 

0.42 

0.77 

0.65 

0.73 

0.82 

17.94 

15.93 

47.51 

41.80 

60.35 

63.79 

83.20 

47.77 

51.05 

29.79 

38.73 

43.24 

61.13 
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14 

15 

16 

17 

18 

19 

20 

21 

22 

Nellore 

Nizamabad 

Prakasam 

Rangareddy 

Srikakulam 

Vishakhapatnam 

Vizianagaram 

Warangal 

West Godavari 

0.46 

0.69 

0.39 

0.74 

0.66 

0.63 

0.74 

0.69 

0.62 

78.98 

88.04 

36.85 

41.19 

50.33 

39.98 

44.18 

72.03 

85.94 

 

3. Conclusions 
 

The DSI is a function of standardized ratio of ET to PET and standardized NDVI. This enables the DSI 

to be sensitive to water availability and also the vegetation stress condition in the region. The negative 

DSI values represent drier than normal conditions and positive values represent relatively wet 

conditions. The spatial average monthly DSI for each year was plotted for each district. It was 

observed that the dynamic range was large in the month of June. The variance plot showed that in the 

month of June, the DSI was having larger variance. The variance was also high during the transition 

period between two cropping seasons and during summer. It was also observed that the variance was 

low in the predominantly irrigated crop growing districts compared to the rainfed crop growing districts. 

The spatial pattern of the cumulative seasonal DSI clearly captured the drought affected districts 

during the reported drought years. When the seasonal cumulative DSI was correlated with the 

seasonal rainfall, the DSI showed a very strong relation with the current month rainfall in all the 

districts. It was also observed that in delta districts with predominant irrigated crop, the DSI vs rainfall 

relation was poor as the delayed crop calendar in the irrigation command does not synchronize with 

the rainfall distribution during the cropping season. The Net Primary Productivity (NPP) of a region 

gets greatly reduced due to the incidents of drought. In this study the MOD17 GPP/NPP product was 

used as a surrogate measure of vegetation activity/productivity and associated the NPP response to 

drought, for comparison against the DSI. When the annual DSI was plotted along with the annual NPP, 

it was observed that the DSI co-varied with the NPP in all the years and study. It also captured all the 

reported drought years by recording negative values during those years. When correlated with the 

NPP, most of the district showed very strong relation with the DSI. This study over Andhra Pradesh 

state of India reveals that the DSI could discern the problem area within the time scale considered. 

The DSI was able to provide a quantitative degree of severity of the drought in a region and hence DSI 

can be one of the important drought indicators for early assessment of drought. 
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