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Abstract The objective of this paper is to analyze the land surface temperatures (LST) derived from 

three satellite images as a proxy for urban heat island potential, through a peri-urban heat troughs 

(PuHT) to rural cool troughs (RuCT) continuum, concepts largely overlooked in the literature, in the 

Bosomtwe district of the Ashanti region of Ghana. Four Landsat satellite images from 2002, 2008 

Enhanced Thematic Mapper+ (ETM+) and 2014 Landsat 8 Operational Land Imager and Thermal 

Infrared Sensor (OLI/TIRS) were geo-referenced and processed for classification using the maximum 

likelihood classifier algorithm in ERDAS Imagine 13. Land Use and Land Cover (LULC) transition 

analysis was performed in ArcMap for ArcGIS 10.2. Results indicate that, in order of importance, 

recent fallows and grasslands along with built up/bare land and concrete surfaces have been 

increasing in terms of coverage. A corresponding surface reflectance translated into LST values 

ranging between a minimum of 24ºC (297K) to a maximum of 53ºC (326K). Changing LULC types 

correlated with the land surface temperature fluxes, creating the RuCT and PuHT. This result explains 

the relatively substantial peri-urban land use dynamics in the district. Future studies should develop 

threshold values for RuCT and PuHT temperatures. 

Keywords Peri-urban heat trough (PuHT); Rural cool trough (RuCT); Land Surface Temperature 

(LST); Land Use Land Cover (LULC); Bosomtwe; Ghana 
 

1. Introduction 

 

Land surface characteristics determine the amount of energy that is absorbed and emitted. The 

reflectance and emission properties of land surface features also determine the albedo that defines the 

percentage reflectance of solar energy from the earth surface (Ahrens, 2005). As a proxy for 

calculating the degree of hotness or coldness of the land surface, many researchers have used 

thermal infrared (TIR) satellite remote sensing to estimate land surface reflectance properties to 

extract surface temperature and moisture for climatic analysis (Rajeshwari et al., 2014; Liu and Zhang, 

2011 and Srivastava et al., 2010). Land use and land cover (LULC) dynamics influence the ability of 

land surfaces to absorb or reflect solar radiation in varying proportions.  
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In furtherance of handling LULC dynamics, previous studies have indicated that depending on the type 

of LULC obtained, it could be possible to extract surface moisture and temperature characteristics 

from LULC maps generated from Advanced Space-borne Thermal Emission and Reflection 

Radiometer (ASTER), Landsat, MODIS and others (Ahrens, 2005; Liu and Zhang, 2011 and 

Srivastava et al., 2010). Accordingly, the energy emitted by the LULC mosaic as indicated by its 

surface energy fluxes and atmospheric conditions, aids in determining the varying energy fluxes of 

land surfaces (Vlassova et al., 2014). 

 

In peri-urban landscapes, the complex mixture of settlement and vegetation exhibit different energy 

fluxes. This phenomenon determines the amount of surface temperature that can be sensed and 

recorded. In a study by Sobrino et al. (2004), the relationship between vegetation and land surface 

temperature was established by correlating normalized difference vegetation indices (NDVIs) with the 

temperature profiles of land use classes. Widyasamratri et al. (2013) found that there are limitations in 

accessing and using air temperature of an area to represent actual temperature characteristics in 

investigations of urban heat islands (UHIs) and similar phenomena. This limitation could be reduced 

through the use of NDVIs and correlated against estimated land surface temperature (LST) as 

proximate analysis for climate change analysis (Mbithi, nd; Weng, 2004; Weng, 2001). 

 

As a result, the data obtained from NDVIs are typically used to determine the effectual land surface 

radiating temperature that affect surface energy and vapor fluxes interacting with the atmosphere 

(Yuan and Bauer, 2007). According to Vlassova et al. (2014), LULC dynamics reflects the surface 

temperature characteristics, which serve as surrogates for documenting climate change using 

proximate variables such as temperature and rainfall. This data reinforces the Intergovernmental Panel 

on Climate Change Fourth Assessment Report (IPCCAR4) and cited in (Meehl et al., 2007), that 

projected mean annual precipitation will demonstrate increasing and decreasing trends in high 

northern latitudes of the tropics and the subtropics, respectively.  

 

LST estimates have been conducted by Widyasamratri et al. (2013) to measure the rate and intensity 

of urbanization in Jakarta, Indonesia. From that study a relationship between urbanization and UHI 

was established for the city. Modification of LULC types usually results in altered land surface 

temperatures (Asmat et al., 2016). The peri-urban mosaic consists of a complex mixture of rural and 

urban LULC classes, which clearly exhibits diverse surface reflectance and emissivity configurations 

(Rajeshwari and Mani, 2014). Using remote sensing and geographic information system (GIS) 

techniques; it is easier to estimate the surface temperature profiles of these peri-urban LULCs. 

 

Research conducted by Voogt and Oke (2003), indicated that higher temperature values are 

associated with urban rock and built-up areas, while lower temperatures exemplify rural landscapes. 

These sharp temperature contrasts have aided in the measurement of environmental reflectance 

propensities of the various LULC types, which exhibit localized effects while contributing to regional 

and global heat budgets in the long term (Joshi and Bhatt, 2012).   

 

Again, beyond the statistical assessment of land use and land cover changes (LULCCs) obtained from 

classified satellite images, LSTs correspond to certain land use classes that can be derived from the 

TIR band of the satellite image (Mbithi et al., nd; Urban et al., 2003). These results may portray the 

latent and sensible heat energy fluxes exhibited by the LULCC dynamics. From a temporal dimension, 

it is plausible to mimic the dynamics of particular climatic variables and to eventually, project some 

variability or even changes in local to regional climates (Blake et al., 2011; Iino and Hoyano, 1996 and 

Lipton and Ward, 2000). Satellite remote sensing with a GIS framework has been used to study UHI 

differentials (Quattrochi et al., 2000). These techniques were employed to juxtapose LULC variations 

with LST anomalies extracted from satellite images (Ambinakudige, 2011). 
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As an alternative to the analysis of LST as surrogate to climate change, the use of down-scaled 

Regional and Global Climate Models (RGCMs) has facilitated to an appreciable extent, the forecasting 

of future climate scenarios in many instances (Thomas, 2008). The RGCM data, with typically low 

spatial and temporal resolution of several degrees, usually have error-laden results to preclude their 

use in accurately simulating present-day climate (Bonan et al., 2002). In employing RCMs in regional 

climate simulations, higher spatial resolution data usually performs sufficiently for providing adequate 

scientific insights into regional climate change analysis (Khang et al., 2009). Some of these models, 

such as the CCSM3 2005 of the US National Center for atmospheric Research (NCAR) and the 

UKMO/HadGEM1 2004 of the United Kingdom, have high regional climate simulation capabilities 

(Khang et al., 2009).  

 

In placing the current study in the context of conventional methods and procedures, the Bosomtwe 

district, with an area of 330km
2
, is arguably too small to significantly influence local to regional climatic 

conditions in terms of rainfall and temperature variables if model downscaling methods are used. 

LULC dynamics extracted from satellite images prescribe different spatio-temporal changing dynamics 

of the LULC types, with their possible effects on land surface reflectance. This assumption underpins 

the use of LST extraction from satellite images and juxtaposing that data with the LULC types derived 

from the LULCC patterns observed in the Bosomtwe study area.  

 

2. Theoretical Basis of Land Surface Temperature (LST) extraction Algorithms  
 
In a study by Dousset and Gourmelon (Dousset, and Gourmelon, 2003) and cited by Chen et al. 

(2006), there is a methodological potential for establishing relationships between urban LST and LULC 

categories using satellite multi-sensor data. From this analysis Chen et al. (2006), a correlation 

between urban land uses, along with nighttime and daytime average LST profiles, was established. 

 

According to Rajeshwari and Mani (2014), several algorithms have been developed and employed in 

the estimation of LST. Some of the frequently-used algorithms are Split-Window (SW), Sobrino, Mao, 

Dual-Angle, and Sob-Mao. Most studies focused on urban areas and arid and semi-arid regions. In 

many of these studies, a single thermal band was used. These approaches were used to extract the 

LSTs from ASTER and MODIS data (Sobrino et al., 2003). Again, Jiménez-Muñoz et al., (2006) and 

cited in Srivastava et al. (2010), used an NDVI-based approach to derive surface emissivity over 

agricultural areas using ASTER images. Further, Coll et al., (2005) had also compared LST estimates 

between ASTER and MODIS images in their study.  

 

Inverting the radiative transfer equation (RTE) is the most appropriate process for retrieving LST from 

a single-channel identified in the TIR region, just like a Landsat image (Cristobal et al., 2009). This is 

expressed as per the wavelength of the spectrum sensed as follows:  

 

       ,,, 1 atmatmssensor LLTBL 
   

  (1) 

 

Where Lsensor is the top of atmospheric (TOA) radiance, ε represents the surface emissivity, Bλ (Ts) is 

the black body radiance derived by the Planck’s law and Ts is the LST. L↓atm, λ is the downwelling 

atmospheric radiance, τ is the total atmospheric transmissivity between the surface and the sensor, 

and L↑atm, λ is the upwelling atmospheric radiance. It should be noted that Eqn. (1) depends on the 

wavelength used and also on the observation orientation of sensor platform, although for Landsat, the 

nadir view offers better outcomes.  

 

The atmospheric parameters τ, L↓atm, λ and L↑atm, λ are estimated from in situ radio-sounding operated 

on radiative transfer codes such as MODTRAN [31]. Therefore, from Eqn. (2), Ts is derived by using 
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the inversion of Planck’s law. A further inversion of Eqn. (2) is used to correct atmospheric as well as 

emissivity effects on the measured data by the sensor. The crucial challenge of this method, however, 

is the need for radio-sounding to be simultaneously launched with the satellite tracking system 

(Cristobal et al., 2009). 

 
Radiances are in W m

-2
 sr

-1
 µm

-1
 and wavelength in µm; the B term is Planck’s law, expressed as 

follows: 
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Where c1 and c2 are Planck’s radiation constants, having values of 1.19104 x 10
8
 Wµm

4
 m

-2
 sr

-1
 and 

1.43877 x 10
4
 µm K, respectively, while Ts and λ are the surface temperature in K and thermal bands 

wavelength in µm. Accordingly, it is pertinent to note that the spectral magnitudes should be integrated 

over a band pass, in the case of Landsat sensors. This coheres with the work of Jiménez-Muñoz et al. 

(2013), which employed radiative transfer equation on a single-channel to extract LST. 

 

2.1. The Concepts of Peri-Urban Heat Trough (PuHT) and Rural Cool Trough (RuCT) 

 

Many studies have concentrated attention on the generation of temperature profiles to measure UHI 

fluxes (Liu et al., 2011; Srivastava et al., 2010; Mbithi et al., nd; Weng et al., 2004 and (Weng, 2001). 

UHI and its impact on rainfall may have been modified by local climate change; however, the 

quantitative dimensions are yet to be unraveled (Blake, 2011). Most of these studies have not 

considered explicitly the effects of PuHT systems becoming potential peri-urban heat islands in 

transition from the RuCT, into becoming ultimately, the so-called urban heat islands (UHIs) (Liu et al., 

2011).  

 

Both PuHT and RuCT concepts refer to the concentration of surface up-welling heat energy fluxes that 

can be sensed as evidence of changing land use patterns in peri-urban and rural landscapes, 

respectively. These sensible heat fluxes result from the modification and conversion of vegetative and 

rural LULC types to considerable built-up land use types (Carnahan and Larson, 1990; Baylis et al., 

1999). These correlate with moderate to extreme LULC characteristics of the peri-urban and urban 

landscape, with varying LST configuration (Srivastava et al., 2010). PuHT could be described as the 

incipient stages of UHIs; the former, however, having a relatively wider geo-spatial dimension in 

comparison to the latter.  

 

These surface temperature profiles occur due to the progressive increase in urbanization of the rural 

landscape. As a result, peri-urbanization processes ensue to alter the previously rural land surface 

characteristics into peri-urban and urban land surface configurations. The land surface characteristics, 

therefore, result in the RuCT, moderate PuHT and an ultimate UHI core in continuum. The resultant is 

a LST gradient that develops along the rural to urban lands surface continuum. 

 

Previous studies on land surface heating fluxes have largely focused on core UHIs as surrogates of 

extraction urban climates (Srivastava et al., 2010). The literature, however, remains sparse on the 

potentially significant role of PUAs in fuelling the ultimate heat island system. This study proposes that, 

considering the relative rapidity with which rural landscapes are being converted into peri-urban land 

uses, with surface reflectance transforming into built-up and paved land uses, it is imperative to 

analyze the connections between RuCTs and the PuHT systems as potentially full-fledged heat island 

cell areas. The objective of this paper is to analyze the LST derived from three satellite images, as a 
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proxy for the creation of potential UHIs through PuHT and RuCT continuum, in the Bosomtwe district 

of the Ashanti region of Ghana. This paper discusses the omissions of LST transitions from the rural, 

with preponderance of vegetation, to the urban core with high built-up surfaces. It does so by relating 

the LULC dynamics of the Bosomtwe peri-urban district, to determine LST fluxes; typical of peri-urban 

areas. The introduction of the concepts of the RuCT and PuHT into the literature, give credence to the 

potential LST continuum profiles between the rural ‘cool’ and urban ‘hot’ areas, using the peri-urban 

areas as the transitional zones. 

 

3. Materials and Methods 

 

3.1. Profile of the study area 

 

The study area lies within latitude 6º28’N—latitude 6º40’N and longitudes 1º20’W—longitude 1º37’W in 

the Ashanti region of Ghana. It has a land area of 330km
2
, as seen in Figure 1. The largest Crater 

Lake in Ghana, Lake Bosomtwe, is located in the district. The area is characterized by a rolling 

topography which ranges between 500 and 1500m above sea level. The drainage patterns of rivers 

and streams of the district are dendritic and centripetal (Carnahan and Larson, 1990). Rivers that drain 

the basin include oda, butu, siso, supan and adanbanwe. 

 

                      
 

Figure 1: Map of the Bosomtwe District showing the study communities in Ghana 

 

The district’s rainfall regime is typical of the moist semi-deciduous forest zone of the country, showing 

two well-defined rainy seasons. The main rainy season occurs from March to July, while September to 

November constitutes the minor rainy season with an average annual rainfall of 1,400 mm. The mean 

monthly temperature is around 32°C with a relative humidity of up to 85%.  

 

The district exhibits semi-deciduous forest vegetation characteristics, with different species of tropical 

trees with high economic value. The dominant tree species native to the district include: wawa 

(Triplochiton scleroxylon), mahogany (Khaya ivorensis), and onyina (Ceiba pentandra). Through 

overharvesting, the original forest cover has been converted into secondary and grassland vegetation. 

Slash and burn agricultural methods as well as illegal gold mining activities are also responsible for the 

land and vegetation cover alterations. 
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The expansion of villages in the district is influenced by the proximity between the district and 

peripheral settlements of the greater Kumasi metropolitan area, the capital of the Ashanti region of 

Ghana. Increases in infrastructure, socioeconomic activities, and tourism have contributed to LULCCs 

in the district.  

 

3.2 Data and Software 

 

3.2.1 Sources of Data 

 
Landsat 7 Enhanced Thematic Mapper (ETM), Landsat 7 Enhanced Thematic Mapper plus (ETM+), 

and Landsat 8 Operational Land Imager/Thermal Infrared sensor (OLI/TIRS) with a spatial resolution 

of 30m x 30m were used (see Table 1 and Figure 2(a-c)). The use of these images was informed by 

their availability and relative clarity in terms of cloud cover and other forms of instrument noise. The 

use of these three was based on their relative image quality which required minimal radiometric 

correction.  

 
Table 1: Satellite image characteristics 

 
Year  Satellite Sensor  Date acquired  Bands used 

2002 Landsat 7 ETM May 7 1,2,3,4,5,6 

2008 Landsat 7  ETM+ February 16 1,2,3,4,5,6 

2014 Landsat 8  OLI/TIS January 8 2,3,4,5,10,11 

 

Because of the coarser spatial resolution of Landsat TM/ETM/TIRS images at 30m x 30m, it was not 

methodologically expedient to downscale climatic variables from any regional climate model (RCM) for 

the analysis of climate change and variability to any appreciable extent in this study. It is therefore 

convenient to use another approach of extracting climate variability from the satellite image and 

comparing it with some air temperature point data (7), (11). 

 

     
   

 

 

 

 

 

 
 
 
 

a 

b 

Figures 2 (a—c): Satellite images in false color 

composite of 4-3-2 band combination  

a) 2002; b) 2008 & c) 2014 

b 
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3.2.2 Software used 

 

The Hexagon Geospatial ERDAS Imagine 13, ENVI 4.7, and ESRI’s ArcGIS v.10.2 software were 

used for data analyses (Figure 3). The Garmin eTrex 20
®
 Global Position System (GPS) receiver was 

used to randomly select 58 coordinates of selected LULC as ground control points (GCPs) during field 

work, at ±3m accuracy. These points were loaded and imputed into the remote sensing software to 

perform the accuracy checks on the image classification. The maximum likelihood classifier (MLC) 

algorithm was used, after satisfying the assumptions of image data normality.  

 

The LULC classes were derived based on field experience and familiarity with the study area as well 

as their spectral characteristics. The LULC schema used was based on (Baylis et al., 1999) classes 

types identified as: dense forest (DF), low forest (LF), built-up/bare lands and concrete (BBC) 

surfaces, recent fallows and grassland (RFG) as well as water body (WB). Three criteria informed the 

selection of the images used: 1. The quality of the images with respect to the percentage of cloud 

cover and other image noise, 2. The years with considerable evidence of vegetation regeneration after 

the 1980s bush fires (due to prolonged drought conditions), and 3. The need to ascertain LULC trends 

over a 12-year period (which is considered long enough to detect and generate meaningful LULCCs).  

 

 

 

Figure 3: Methodological flow chart of the LULC and LST extraction procedures 

 

3.2.3 Spectral Radiance Scaling Method  

 

Conversion from digital numbers to top of atmosphere (TOA) radiance was performed using image 

meta data Kepner et al. (2000), in ENVI 4.7 software (Butt et al., 2015). In this regard, the formula to 

convert cell value as DN to cell value as radiance CVR1 for the three images, utilized the formula as 

follows: 

 

 
  minmin

min

minmax
LQCALQCALX

QCALQCALMax

LL
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Where CVRI is cell value as radiance, QCAL is digital number, Lmin is spectral radiance scales to 

QCALmin, Lmax is spectral radiance scales to QCALmax, QCALmin is the minimum quantized 

calibrated pixel value (estimated as 1), and QCALmax is the maximum quantized calibrated pixel value 

(typically = 255) (Chander and Markham, 2003). 

 

3.2.4. Apparent Brightness Temperature 

 

The formula to convert radiance to temperature without atmospheric correction method was used in 

converting the radiance to temperature in Kelvin (Kepner et al., 2000). The apparent brightness 

temperature or at-sensor brightness temperature (Tb), was determined by applying blackbody 

principles, which is usually computed by means of Planck’s law inversion using the Landsat image 

series USGS (2015), with the following simplified equation:  

 













1
*

1

1

2

R

b

CV

K

K
T



               (4)

 

 

Where, ε is the emissivity (typically 0.95, and could as well be derived from NDVIs). The K1 and K2 (K) 

(W m
-2

 sr
-1

 mm
-1

), are calibration constants based on the Landsat thermal band configuration and CVR1 

is the spectral radiance (W m
-2

 sr
-1

 mm
-1

). In the case of Landsat 7, K1 and K2 are 666.09 and 1282.71, 

respectively. With Landsat 8, the K1 and K2 are 480.89 and 1201.14 (band 11), respectively.  

 

Surface emissivity was considered in the estimation of Ts for the LULC targets (El-Magd et al., 2016).  

The LST (Ts) is estimated using the algorithm in equation 5. 

 




 ln*1 



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





b

b
S

T

T
T         (5) 

 

Where, Tb is the effective satellite temperature, Ts is the absolute LST in Kelvin, λ is the wavelength of 

the radiance emitted (λ = 11.5μm), ρ = (h × c) / σ = 1.438 ×10
-2

 (m K), h is Planck’s constant (6.626 × 

10
-34

 Js), c is the velocity of light (2.998 × 10
8
 m/s), σ is the Boltzmann constant (1.38 ×10

-23
 J/K), and 

ε is the composite emissivity. In this study, ε = 0.95 was used for the soil and vegetation (27). The 

operations were performed in ERDAS Imagine 13, ENVI Band Math and the ArcMap Raster calculator 

functions in ArcToolbox (Butt et al., 2015). 

 
4. Results Discussions and Conclusion 
 
4.1 Results of LULC Accuracy Assessment 

 

The Kappa statistic is generally accepted as a measure of classification accuracy for both the model 

as well as user of the model of classification (35). Kappa values are characterized as <0 as indicative 

of no agreements and 0–0.2 as slight, 0.2–0.41 as fair, 0.41–0.60 as moderate, 0.60–0.80 as 

substantial and 0.81–1.0 as almost perfect agreement (Kepner et al., 2000; Chander and Markham, 

2003). The overall classification accuracy of the images yielded substantial high Kappa statistics of 

58%, 72.41% and 82.76% for the 2002, 2008 and the 2014 images, respectively. This is an indication 

of classification accuracy of moderately substantial to almost perfect agreement (Chander and 

Markham, 2003).  
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4.2. Results from 2002 LULC and LST analyses 

 

The LULC class of 2002, as indicated by Figure 4, was an increase over the previous year (1986). In 

1986, the LULC categories were 5834 ha, 9181 ha, 1201 ha, 12,722 ha, and 3494 ha for DF, LF, BBC, 

RFG and WB respectively. These served as the base year of analysis, in terms of vegetated land area 

coverage. In 2002, dense forest cover was 8760.9 ha of the land cover. A proportion of 30% of the 

land area was covered by low forest vegetation with 9329.8 ha. The built-up/bare land and concrete 

surfaces also covered an area of 5664.2 ha. The recent fallows and grassland were reduced to 4422.9 

ha of the land area, while the lake covered an area of approximately 3434.9 ha of the total land area.  

 

 

 

Figure 4: The area of LULC (ha) for 2002 

 

The corresponding surface temperature ranged from a minimum of 24ºC (297K) to a maximum of 30ºC 

(303K), with the mean and standard deviation at 36ºC (308.5K) and 9K respectively. The surface 

temperature profile indicated an improved vegetated surface which had relatively reduced the surface 

heat fluxes, thereby, reducing the land surface temperature (Figure 5). This is in tandem with Coll et al. 

(2010)’s assertion that NDVI variables usually negatively correlate with the land surface temperature. 

 

 
 

Figure 5: The 2002 LST extracts showing the surface temperature fluxes 
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4.3 Results from 2008 LULC and LST analyses  

 

The land use classes for 2007 showed considerable increase in the DF cover constituting 10,299.9 ha 

of the total LULC classes in the area. The next cover in order of importance was RFG, which covered 

an area of 8434.9 ha. BBC surfaces ranked next in terms of coverage with 5451.2 ha. LF was next in 

terms of coverage importance with 5193.6 ha of the land area (Figure 6). An appreciable proportion of 

RFG was derived from the exposure of the land surfaces to agriculture and other modes of vegetation 

removal around the fringes of Lake Bosomtwe (Figure 7). A corresponding surface emission and 

reflectance translated into LST values ranging between 24ºC (297K) to 53ºC (326K). The mean 

temperature value was 38ºC (311.5K) and a standard deviation of 20.5K. This result explains; a 

relatively more rural than urban land use dynamics in the district. The rather high LST anomaly, 

however, was ostensibly due to the isolated patches of burnt-up surfaces emitting higher heat energy 

fluxes; in accordance of Stephan-Boltzmann law of surface emissivity (Irish et al., 2006). On the basis 

of this, the aggregate surface temperature values extracted from the 2008 satellite image gave 

credence to the rather higher aggregate surface maximum temperature values recorded than the 

aggregate maximum temperature recorded over the 2014 satellite image; even though, the latter 

year’s built-up and paved surfaces were relatively higher than the former. 

 

 
 

Figure 6: The Area of LULC (ha) for 2008 

 

The temperature characteristics were in response to the surface vegetation removal. As human 

populations increase over time, the demand for land for residential and commercial uses other than 

forest and agriculture, dominates the landscape. Consequently, the surface becomes exposed to 

various degrees of heat energy fluxes from insolation with land surface features interactions (Jiménez-

Muñoz, and Sobrino, 2013). The surface reflectance characteristics of the land use types, determine, 

to a greater extent the surface temperature profiles in accordance of the land surface emissivity and 

reflective capacities. This finding conforms to the result of Rozenstein et al. (2014), who studied global 

LST for the year for 2013, using at sensor brightness proxy, derived from Landsat with ASTER and 

AMSR-2 images.  
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Figure 7: 2008 LST extracts showing the surface temperature fluxes  

 

4.4 Results from 2014 LULC and LST analyses 

 

The 2014 image shows that the Bosomtwe district had experienced appreciable levels of land cover 

changes in terms of increasing BBC surfaces (Tursilowati et al., 2012). The LULC classes showed 

some startling revelation as far as the area coverage of the respective land uses was concerned 

(Baylis et al., 1999). Invariably, the BBC areas had increased with time up to the year 2014; this is 

evident by the many PuHT temperature profile, indicated by consistent peaking of the LST graphic for 

the 2014.  

 

According to Appiah et al. (2015), in a similar work conducted in the study area, low forest cover 

maintained a high area of coverage with 10,947.83 ha of the total LULC. Recent fallows and 

grasslands were also next by area of coverage with 9366.75 ha. BBC surfaces, although showed an 

increase from observation, the statistics of 4596.93 ha by area coverage, indicated an apparent 

decrease in area from the 2010 image with 5454 ha; representing 14% of the total land area (Appiah 

et al. (2015). The area covered by the lake, WB, was 3424 ha of the total area (Figure 8). 

 

 
 

Figure 8: The Area of LULC (ha) for 2014 
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However, the classification scheme that included bare lands as part of the BBC areas resulted in a 

slower rate of increase in the BBC land uses, as certain parts of the bare lands were re-vegetated. In 

reality, therefore, the BBC land use type had been increasing with time. Field observations and other 

auxiliary statistical data, to support this claim for instance, showed increasing trends. Auxiliary data 

such as the number of houses recorded under the periods by the Ghana Statistical Services 

Population and Housing Census in 2010 has amply supported the fact that new residential houses 

increased from 12,399 to 15,525 between the years 2000 and 2010 (Tursilowati et al., 2012). This is 

indicative of increasing land surface temperature, associated, invariably, with increasing impervious 

surfaces (Yuan and Bauer, 2007). This was further evidenced by the relatively high LST of 37ºC (310 

K) as compared to the minimum of 24 (297K).  

 

 
 

Figure 9: 2014 LST extracts showing the surface temperature fluxes  

 

The aggregated temperature values from the satellite image land surface temperature extractions are 

displayed in Figure 10 and Table 2. As indicated in the Figure 10, intermittent occurrences of peri-

urban land uses create the heating troughs intervening the rural areas extending from east to west on 

the map area.  

 

The changing LULC dynamics in the study area over the period under review indicated that there is a 

correlation between the land use conversion and modifications from one use type to another. As the 

LULC type changes, its corresponding surface energy emittance is reflected in the recording of the 

surface sensible heat. Certainly, the 2014 and the 2008 LST graphs depict the surface heat energy 

amplitude over the entire district, with the peaks indicating isolated pockets of PuHT, measured over 

the BBC areas. Usually, whenever the rural green and vegetated landscapes become converted into 

residential and other BBC uses, their surface energy fluxes are changed, and represented by the 

PuHT, which serves as the intervening energy flux between the RuCT and the ultimate fully-formed 

UHI; which is a future condition, using the business as usual LULC dynamics in the Bosomtwe district. 
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Figure 10: The composite LST extracts for 2002, 2008 and 2014 showing the PuHT and RuCT areas 

 

Table 2: Extracted Maximum, Minimum, Mean and Standard Deviation of Land Surface Temperature from Images 

 

Satellite Years Max ºC (K) Min ºC (K) Mean ºC (K) 

2002 30 (303) 24 (297) 27 (300) 

2008 53 (326) 24 (297) 38 (312) 

2014 37 (310) 24 (297) 31 (304) 

 
The 12-year duration (2002-2014) also corresponded with an increase in the non-vegetative land uses; 

particularly, smallholding agriculture land for food crops production. The BBC as well as RFG, in 

comparison to the vegetated lands, such as the DF and LF covers, which also included some oil palm 

and citrus fruits plantations, actually increased. The composite statistics of LULC in terms of area in 

hectares is displayed in Figure 11.  

 

 
 

Figure 11: Grouped bar graph of LULC area statistics in hectares 
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4.5 Implications of LULC change on rural and peri-urban LST regimes  

 

The LST regimes invariably corresponded with the LULC types, classified from the satellite images 

(2a—c). Areas with BBC land uses showed high emittance and reflectance for the records of high 

temperature profiles. These areas, according to Joshi and Bhatt (2011), are the causes of urban 

islands in highly dense built urban environments. In rural environments, however, the surface 

temperature characteristics were observed to be low in comparison to the urban areas. This 

observation was corroborated by (Ambinakudige, 2012) in a study of Bangalore, India, that 

anthropogenic activities alter the land cover and expose it to intense heating; thereby causing 

differential temperature regimes between the urban core and the rural outgrowth areas. The 

Bosomtwe district also demonstrates similar rural to urban temperature profile. By implication, as rural 

land uses are replaced by peri-urban BBC surfaces, they eventually become the potential driving 

forces of PuHT, with the tendencies to generate UHI conditions.  

 

In this context, these PuHT conditions have higher likelihood of occurring in the fast-growing peri-

urban towns in the district. Areas such as Esereso, Jachie, Aputuogya, Kuntenase and Pramso as 

shown in Figures 1 & 9, are likely to be influenced by their local micro-climates; and these are likely a 

function of the land use change dynamics. In the context of this study, an operational and postulated 

temperature threshold for the PuHT and RuCT in a tropical semi-deciduous climate zone, such as the 

Bosomtwe district was averaged at 31ºC (303K), which is 1ºC below the district’s annual average.  

 

The resultant effects of the changing temperature regime could be expressed in terms of reduced 

rainfall and increased temperature patterns for an area (Voogt and Oke, 2003). If this trend of LULC 

change continues into the future, a drastic near to full UHI is imminent in the rapidly urbanizing peri-

urban fringes, considering business as usual scenarios. For replication, the temperature threshold 

values could be calibrated based on the type of climatic region under consideration. The associated 

land surface emissions from the various LULC types yielded corresponding LSTs, in consonance with 

a similar work by Kumar et al. (2016). This phenomenon, presents an opportunity for the formation of 

PuHT. When juxtaposed with the RuCT, there is the tendency for surface energy fluxes dissipation 

from the rural areas with high vegetation cover, to serve as carbon sinks that can regulate local 

surface warming effects (LSWE) (Maingi and Marsh, 2002; Boori et al., 2015).  

 
The study has buttressed the fact that there exists a correlation between LULC emissivity and surface 

temperature profiles. These have tendencies to support the PuHT and RuCT concepts, proposed and 

espoused in this paper. The land surface configurations and their attendant variability in terms of 

temperature, suggest that the use of NDVI may not be an adequate measure of quantifying surface 

heat island (SUHI) systems; but with the addition of other approaches, this is reliable (Coll et al., 

2010), (Ogashawara and Da Silva Brum Bastos, 2012), (Bhatt et al., 2013). To address this anomaly, 

Weng et al. (2004) postulated the use of vegetation fraction identified within a pixel. This is derived 

from a spectral combination of different LULC fragments, instead of solely relying on NDVI as a metric 

indicator. Their findings showed that vegetation fraction showed a moderate relationship with LST 

Appiah et al. (2015); Li et al. (2011) which coheres amply with the situation in the Bosomtwe district of 

Ghana.  

 

4.6 Conclusion and Recommendation  

 

This paper argued that, the transition from a rural to an urban area also exhibits a temperature profile 

that traverses through a RuCT through a PuHT, respectively, before achieving the ultimate UHI 

condition. The results obtained from the analyses of the LULC and the LST maps, have some land use 

and climate variability policy implications. The paper espouses that the land use pattern, in the 

Bosomtwe district’s is changing from rural to peri-urban, through the replacement of the arable farm 
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lands and forest covers with built up concrete infrastructure. This observation, therefore, supports the 

PuHT and RuCT conditions that result from changing rural and peri-urban landscape configuration, as 

proposed by this study.  

 

The land surface characteristics and their associated LST variability, suggest that the Bosomtwe 

district, a hitherto predominantly rural area is gradually becoming peri-urbanized. To address this 

anomaly, the implementation of the peri-urban land use policy framework of the Bosomtwe district 

assembly should be strictly enforced, where necessary. This would ensure that land uses that do not, 

as a matter of urgency require land use conversions from their original land use types such as forest 

covers and arable agricultural lands, would be preserved, to enhance surface cooling.  

 

It is also proffered that in order to curtail the rapid development of PuHT systems, which are the 

fuelling cells of the UHIs; there is the need for the implementation of peri-urban greening and land use 

modification policy strategies. The implementation of these measures would serve as a mitigation 

measures that would preserve most of the rural landscape configuration, which would enhance more 

RuCT systems rather than the PuHTs that could adversely affect the local micro-climatic sub-system, 

with possible regional consequences on agriculture and other livelihood activities in the district. 

 

A further investigation and the determination of an average temperature value as a threshold for the 

measurement of the RuCT and PuHT in tropical sub-humid climatic zones, where the study district is 

located is proffered, for further research.  
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