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Abstract McKee formula has been widely used to predict the compression strength of corrugated 

boxes. An experimental verification, published in early 2015, showed the inaccuracy of the formula. 

McKee formula left out several important factors, including box height, temperature, and humidity. 

An artificial neural network, CBU-BOX1, was developed based on 74 cases of cubical RSC single-

wall corrugated boxes from 3”x3”x3” to 36”x36”x36”. Box height, temperature and humidity data were 

included in the network development. CBU-BOX1 performance ranged from 0% to 26.3% error with 

an average error of 6.9% while McKee formula performance ranged from 0.6% to 149.3% error with 

an average error of 28.7%. However, CBU-BOX1 performance dropped significantly when it was 

used for rectangular boxes. Out from twelve test cases of rectangular boxes, the formula resulted in 

an average error of 25.7% while CBU-BOX1 resulted in 34.8%. Thus, the network is unacceptable 

for rectangular boxes. In this study, 67 more cases were added to the previous 74 cases. Out of 141 

cases, 43 were rectangular boxes. CBU-BOX2 significantly outperformed McKee formula with an 

average error of 9.21% versus 30.79%. 

Keywords Artificial Neural Network; Compression Strength; McKee Formula; Corrugated Boxes 

 

1. Introduction 

 

McKee formula has been widely used to predict the compression strength of corrugated boxes. An 

experimental verification [1] showed the inaccuracy of the formula, which left out several important 

factors, including box height, temperature, and humidity.  

 

An artificial neural network is software capable of learning from examples. It has been successfully 

used in transport packaging [2]. The first version of the box compression strength neural network [3], 
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CBU-BOX1, was developed based on data of 74 cases of cubical RSC single-wall corrugated boxes. 

This neural network outperformed McKee formula with an error range of 0% - 26.3% versus 0.6% - 

149.3% with an average error of 6.9% versus 28.7%. However, when CBU-BOX1 was applied to 

rectangular boxes, its performance was worse than that of McKee formula [4]. 

 

In this study additional cubical and rectangular boxes at different temperature and humidity were 

added. The second version of box compression strength neural network, CBU-BOX2, was 

developed. 

 

2. Materials and Methods 

 

Twenty-four cubical boxes were added to the previous 74 cases, which gave a total of 98 cubical 

boxes. Forty-three rectangular boxes were also added. Thus, a total of 141 cases of RSC single-wall 

corrugated boxes were included in this study. An ECT test was performed for each box compressed. 

Some boxes were placed in a temperature/humidity chamber at different combinations of 

temperature and humidity, while some boxes were placed at room condition, which was about the 

standard test environment of 73°F and 50% RH. Box dimensions (width/depth/height) ranged from 3” 

to 36” with a temperature range from 66°F to 104°F, and a humidity range from 48% to 80%.  

 

A feed-forward fully- connected Backpropagation neural network shown in Figure 1 was used. The 

numbers of input and out neurons were controlled by the collected data, i.e., seven input parameters 

and one output parameter. The number of hidden neurons was arbitrary and was chosen as 15 in 

this work. Other training parameters were shown in Figure 2. The sigmoid function,
xe

y



1

1
, was 

used to generate an output (y) of each hidden and output cell from a weighted sum of connection 

weight and input vectors (x). NeuroShell2 [5] was used to train CBU-BOX2 neural network. Figure 3 

shows some features of NeuroShell2 software. Once training reached a satisfactory performance, a 

generic source code was generated for software application development in any programming 

language. Fourteen samples out of 141 cases of training data are shown in Table 1. In the “Mark” 

column, “T” was used for 114 training cases and “V” for validation for 27 cases. 

 

 

 

 

 

 

Input Output 

Wall Thickness (in) - TH 

Box Width (in) – WD 

Box Depth (in) – DP 

Box Height (in) – HT 

ECT (lb/in) – EC 

Temperature (°F) – TM 

Relative Humidity (%) - RH 

Maximum Load (lb) - P 

 

Figure 1: CBU-BOX2 Neural Network Configuration 
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Figure 2: Training Parameters 

 

 
 

Figure 3: NeuroShell2 Neural Network Development Software 

 

Table 1: Training Data Samples 

 

TH WD DP HT EC TM RH P Mark 

0.16 9 9 9 17 83.1 58 341 V 

0.145 9 9 9 17 78.4 57 344 T 

0.151 12 12 12 14 79.2 58 411 T 

0.148 12 12 12 14 88.3 57 439 T 

0.151 12 12 12 14 81.1 57 462 T 

0.156 16 16 16 17 89.8 56 589 V 

0.156 16 16 16 17 88.2 57 534 T 

0.159 16 16 16 17 87.9 57 592 T 

0.141 4 4 12 15 72.0 53 319 T 

0.141 4 4 12 17 72.5 53 275 T 

0.082 4 4 4 16 71.4 53 232 V 

0.082 4 4 4 14 71.8 53 215 T 

0.058 4 4 6 24 72.0 53 355 T 

0.098 4 4 6 17 72.3 53 334 T 
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3. Results and Discussion 

 

Figure 4 shows a partial output generated by CBU-BOX2 neural network. For each of the 141 cases, 

NeuroShell2 compared the predicted strength, i.e., Network(1), and the actual strength, i.e., 

Actual(1). It also outputted the difference of the two figures, i.e., Act-Net(1). 

 

 
 

Figure 4: A Partial Output Generated by NeuroShell2 

 

A generic source code was generated by NeuroShell2 (Appendix A). An Excel spreadsheet 

developed based on the source code is shown in Figure 5. 

 

 
 

Figure 5: CBU-BOX2 Excel Application 
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The CBU-BOX2 performance was evaluated and compared with McKee formula performance in 

Table 3, Figure 6, and Appendix B.  

 

Table 3: CBU-BOX2 & McKee Formula Performance Comparison 

 

Category Number 

Of Cases 

<=5% 

Error 

>5% to 10% 

Error 

>10% to 20% 

Error 

>20% 

Error 

Error Range 

(Average) 

CBU-BOX2 
(All Cases) 

141 

  

60 

or 42.55% 

30 

or 21.28% 

35 

or 24.82% 

16 

or 11.35% 

0% – 56.98% 

(Avg = 9.21%) 

McKee 
(All Cases) 

141 13 

or 9.22% 

16 

or 11.35% 

24 

or 17.02% 

88 

or 62.41% 

0.33% – 149.27% 

(Avg =30.79%) 

CBU-BOX2 
(Cases with V Mark) 

27 11 

or 40.74% 

4 

or 14.81% 

6 

or 22.22% 

6 

or 22.22% 

1.26% - 40.28% 

(Avg = 11.30%) 

McKee 
(Cases with V Mark) 

27 1 

or 3.70% 

2 

or 7.41% 

7 

or 25.93%  

17 

or 62.96% 

2.08% - 149.27% 

(Avg = 37.46%) 

CBU-BOX2 
(Rectangular) 

43 20 

(46.51%) 

8 

(18.60%) 

11 

(25.58%) 

4 

(9.30%) 

0.06% - 36.49% 

(Avg = 8.27%) 

McKee 
(Rectangular) 

43 2 

(4.65%) 

2 

(4.65%) 

5 

(11.63%) 

34 

(79.07%) 

3.14% - 62.59% 

(Avg = 37.05%) 

CBU-BOX2 
(Cubical) 

98 40 

(40.82%) 

22 

(22.45%) 

24 

(24.49%) 

12 

(12.24%) 

0% - 56.98% 

(Avg = 9.47%) 

McKee 
(Cubical) 

98 11 

(11.22%) 

14 

(14.29%) 

19 

(19.39%) 

54 

(55.10%) 

0.33% - 149.27% 

(Avg = 28.04%) 

 

 

 
 

Figure 6: CBU-BOX2 & McKee Formula Performance Comparison 
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4. Conclusion 

 

As seen from Table 3, Figure 6, and Appendix B, CBU-BOX2 significantly outperforms McKee 

formula, including the unseen cases, i.e., those cases with a “V” mark. Table 3 also shows that CBU-

BOX2 performs well for both rectangular and cubical boxes. The 141 cases used to develop CBU-

BOX2 cover wide ranges of box sizes and conditions, i.e., width/depth/height ranges from 3” to 36”, 

temperature range from 66°F to 104°F, and humidity range from 48% to 80%.  

 

In order to make the neural network more comprehensive, material (virgin versus recycled) should 

be added as an input parameter. This can be accomplished by testing recycled corrugated boxes of 

different sizes and environmental conditions. With additional data, a new version of neural network 

can be trained and developed. 
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Appendix A Generic Source Code Generated by NeuroShell2 

 
netsum 

feature2(15) 

Note - inp(1) is TH 

Note - inp(2) is WD 

Note - inp(3) is DP 

Note - inp(4) is HT 

Note - inp(5) is EC 

Note - inp(6) is TM 

Note - inp(7) is RH 

Note - outp(1) is P 

if (inp(1)<0.058) then inp(1) = 0.058 

if (inp(1)>0.546) then inp(1) = 0.546 

inp(1) = (inp(1) - 0.058) /0.488 

if (inp(2)<3) then inp(2) = 3 

if (inp(2)>36) then inp(2) = 36 

inp(2) = (inp(2) - 3) /33 

if (inp(3)<3) then inp(3) = 3 

if (inp(3)>36) then inp(3) = 36 

inp(3) = (inp(3) - 3) /33 

if (inp(4)<3) then inp(4) = 3 

if (inp(4)>36) then inp(4) = 36 

inp(4) = (inp(4) - 3) /33 

if (inp(5)<12) then inp(5) = 12 

if (inp(5)>40) then inp(5) = 40 

inp(5) = (inp(5) - 12) /28 

if (inp(6)<66) then inp(6) = 66 

if (inp(6)>104) then inp(6) = 104 

inp(6) = (inp(6) - 66) /38 

if (inp(7)<48) then inp(7) = 48 

if (inp(7)>80) then inp(7) = 80 

inp(7) = (inp(7) - 48) /32 

netsum = netsum + inp(4) * -0.6943372 

netsum = netsum + inp(5) * -0.8443508 

netsum = netsum + inp(6) * 1.534944 

netsum = netsum + inp(7) * -7.410185 

feature2(4) = 1 / (1 + exp(-netsum)) 

netsum = -0.6371768 

netsum = netsum + inp(1) * -63.56625 

netsum = netsum + inp(2) * -10.43079 

netsum = netsum + inp(3) * -9.066187 

netsum = netsum + inp(4) * -3.963259 

netsum = netsum + inp(5) * -20.94891 

netsum = netsum + inp(6) * 11.87389 

netsum = netsum + inp(7) * 31.26726 

feature2(5) = 1 / (1 + exp(-netsum)) 

netsum = -7.49949 

netsum = netsum + inp(1) * 0.6761363 

netsum = netsum + inp(2) * -7.165943 

netsum = netsum + inp(3) * -5.918962 

netsum = netsum + inp(4) * 2.023466 

netsum = netsum + inp(5) * -0.4293676 

netsum = netsum + inp(6) * 8.238652E-03 

netsum = netsum + inp(7) * -5.399711 

feature2(6) = 1 / (1 + exp(-netsum)) 

netsum = -9.673411 

netsum = netsum + inp(1) * 57.20142 

netsum = netsum + inp(2) * 52.36789 

netsum = netsum + inp(3) * 38.6922 

netsum = netsum + inp(4) * -86.51951 

netsum = netsum + inp(5) * 0.2131806 

netsum = netsum + inp(6) * 7.545617 

netsum = netsum + inp(7) * -31.17518 

netsum = netsum + inp(3) * -4.812082 

netsum = netsum + inp(4) * 0.6202544 

netsum = netsum + inp(5) * -0.610349 

netsum = netsum + inp(6) * 0.9391114 

netsum = netsum + inp(7) * -5.874597 

feature2(11) = 1 / (1 + exp(-netsum)) 

netsum = -2.139933 

netsum = netsum + inp(1) * -14.47617 

netsum = netsum + inp(2) * -4.172575 

netsum = netsum + inp(3) * 14.07384 

netsum = netsum + inp(4) * -26.67177 

netsum = netsum + inp(5) * 9.429369 

netsum = netsum + inp(6) * 11.32987 

netsum = netsum + inp(7) * -4.766322 

feature2(12) = 1 / (1 + exp(-netsum)) 

netsum = -0.2524938 

netsum = netsum + inp(1) * -1.072484 

netsum = netsum + inp(2) * 8.087201E-02 

netsum = netsum + inp(3) * 20.43565 

netsum = netsum + inp(4) * -11.70324 

netsum = netsum + inp(5) * 0.3484668 

netsum = netsum + inp(6) * -56.12461 

netsum = netsum + inp(7) * -2.363098 

feature2(13) = 1 / (1 + exp(-netsum)) 

netsum = -3.89846 

netsum = netsum + inp(1) * -1.38506 

netsum = netsum + inp(2) * -5.276136 

netsum = netsum + inp(3) * -3.536175 

netsum = netsum + inp(4) * 0.1051574 

netsum = netsum + inp(5) * 1.241501 

netsum = netsum + inp(6) * 3.577389 
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netsum = -7.247163 

netsum = netsum + inp(1) * -7.162368E-02 

netsum = netsum + inp(2) * -6.672145 

netsum = netsum + inp(3) * -5.509887 

netsum = netsum + inp(4) * 1.965163 

netsum = netsum + inp(5) * -0.1127764 

netsum = netsum + inp(6) * -0.3749207 

netsum = netsum + inp(7) * -6.057019 

feature2(1) = 1 / (1 + exp(-netsum)) 

netsum = -6.879015 

netsum = netsum + inp(1) * -3.016899 

netsum = netsum + inp(2) * -5.380744 

netsum = netsum + inp(3) * -3.580803 

netsum = netsum + inp(4) * -0.4355183 

netsum = netsum + inp(5) * -0.9137687 

netsum = netsum + inp(6) * 1.621481 

netsum = netsum + inp(7) * -7.314968 

feature2(2) = 1 / (1 + exp(-netsum)) 

netsum = 2.58671 

netsum = netsum + inp(1) * -56.1168 

netsum = netsum + inp(2) * 19.70152 

netsum = netsum + inp(3) * 18.78237 

netsum = netsum + inp(4) * -23.49325 

netsum = netsum + inp(5) * 13.29584 

netsum = netsum + inp(6) * -8.186071 

netsum = netsum + inp(7) * -13.79474 

feature2(3) = 1 / (1 + exp(-netsum)) 

netsum = -6.930517 

netsum = netsum + inp(1) * -3.43881 

netsum = netsum + inp(2) * -5.543357 

netsum = netsum + inp(3) * -3.266341 

 

feature2(7) = 1 / (1 + exp(-netsum)) 

netsum = -6.69485 

netsum = netsum + inp(1) * -2.424634 

netsum = netsum + inp(2) * -5.845432 

netsum = netsum + inp(3) * -3.707195 

netsum = netsum + inp(4) * -0.2126636 

netsum = netsum + inp(5) * -0.6274015 

netsum = netsum + inp(6) * 1.344668 

netsum = netsum + inp(7) * -6.710152 

feature2(8) = 1 / (1 + exp(-netsum)) 

netsum = -7.186853 

netsum = netsum + inp(1) * -1.09149 

netsum = netsum + inp(2) * -6.539968 

netsum = netsum + inp(3) * -4.775326 

netsum = netsum + inp(4) * 0.8580441 

netsum = netsum + inp(5) * -0.1386947 

netsum = netsum + inp(6) * 0.6256868 

netsum = netsum + inp(7) * -6.080272 

feature2(9) = 1 / (1 + exp(-netsum)) 

netsum = -1.865983 

netsum = netsum + inp(1) * 1.98675 

netsum = netsum + inp(2) * -11.25155 

netsum = netsum + inp(3) * -10.4184 

netsum = netsum + inp(4) * 1.585183 

netsum = netsum + inp(5) * -0.5645384 

netsum = netsum + inp(6) * 1.33543 

netsum = netsum + inp(7) * -3.745443 

feature2(10) = 1 / (1 + exp(-netsum)) 

netsum = -6.47867 

netsum = netsum + inp(1) * -0.8656681 

netsum = netsum + inp(2) * -5.996781 

                

netsum = netsum + inp(7) * -6.608476 

feature2(14) = 1 / (1 + exp(-netsum)) 

netsum = -7.510636 

netsum = netsum + inp(1) * 2.029926 

netsum = netsum + inp(2) * -7.943251 

netsum = netsum + inp(3) * -7.275569 

netsum = netsum + inp(4) * 2.87489 

netsum = netsum + inp(5) * -1.476773 

netsum = netsum + inp(6) * 0.559886 

netsum = netsum + inp(7) * -3.235952 

feature2(15) = 1 / (1 + exp(-netsum)) 

netsum = -0.2801921 

netsum = netsum + feature2(1) * -0.4374026 

netsum = netsum + feature2(2) * 3.453336E-02 

netsum = netsum + feature2(3) * 1.700875 

netsum = netsum + feature2(4) * -0.1481685 

netsum = netsum + feature2(5) * -0.9338183 

netsum = netsum + feature2(6) * -0.5930923 

netsum = netsum + feature2(7) * 1.477526 

netsum = netsum + feature2(8) * 0.1232549 

netsum = netsum + feature2(9) * -0.5360605 

netsum = netsum + feature2(10) * -5.806566 

netsum = netsum + feature2(11) * 0.4093191 

netsum = netsum + feature2(12) * -2.210154 

netsum = netsum + feature2(13) * -2.185017 

netsum = netsum + feature2(14) * 2.029893 

netsum = netsum + feature2(15) * -6.077104E-03 

outp(1) = 1 / (1 + exp(-netsum)) 

 

outp(1) = 810 *  (outp(1) - .1) / .8  + 103 

 
 
Appendix B Graphical Comparison of Actual, CBU-BOX2, and McKee Formula for 141 Cases 
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