

Cloud Publications International Journal of Advanced Packaging Technology 2016, Volume 4, Issue 1, pp. 169-176, Article ID Tech-555 ISSN 2349-6665, doi 10.23953/cloud.ijapt.21

Research Article

Predicting Corrugated Box Compression Strength Using an Artificial Neural Network

Siripong Malasri, Prasanth Rayapati and Divya Kondeti

Engineering Management Graduate Program, Christian Brothers University, 650 East Parkway South, Memphis, TN, USA

Correspondence should be addressed to Siripong Malasri, pong@cbu.edu

Publication Date: 29 January 2016

DOI: https://doi.org/10.23953/cloud.ijapt.21

Copyright © 2016 Siripong Malasri, Prasanth Rayapati and Divya Kondeti. This is an open access article distributed under the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Editor-in-Chief: Dr. Siripong Malasri, Christian Brothers University, Memphis, TN, USA

Abstract McKee formula has been widely used to predict the compression strength of corrugated boxes. An experimental verification, published in early 2015, showed the inaccuracy of the formula. McKee formula left out several important factors, including box height, temperature, and humidity. An artificial neural network, CBU-BOX1, was developed based on 74 cases of cubical RSC single-wall corrugated boxes from 3"x3"x3" to 36"x36"x36". Box height, temperature and humidity data were included in the network development. CBU-BOX1 performance ranged from 0% to 26.3% error with an average error of 6.9% while McKee formula performance ranged from 0.6% to 149.3% error with an average error of 28.7%. However, CBU-BOX1 performance dropped significantly when it was used for rectangular boxes. Out from twelve test cases of rectangular boxes, the formula resulted in an average error of 25.7% while CBU-BOX1 resulted in 34.8%. Thus, the network is unacceptable for rectangular boxes. In this study, 67 more cases were added to the previous 74 cases. Out of 141 cases, 43 were rectangular boxes. CBU-BOX2 significantly outperformed McKee formula with an average error of 9.21% versus 30.79%.

Keywords Artificial Neural Network; Compression Strength; McKee Formula; Corrugated Boxes

1. Introduction

McKee formula has been widely used to predict the compression strength of corrugated boxes. An experimental verification [1] showed the inaccuracy of the formula, which left out several important factors, including box height, temperature, and humidity.

An artificial neural network is software capable of learning from examples. It has been successfully used in transport packaging [2]. The first version of the box compression strength neural network [3],

CBU-BOX1, was developed based on data of 74 cases of cubical RSC single-wall corrugated boxes. This neural network outperformed McKee formula with an error range of 0% - 26.3% versus 0.6% - 149.3% with an average error of 6.9% versus 28.7%. However, when CBU-BOX1 was applied to rectangular boxes, its performance was worse than that of McKee formula [4].

In this study additional cubical and rectangular boxes at different temperature and humidity were added. The second version of box compression strength neural network, CBU-BOX2, was developed.

2. Materials and Methods

Twenty-four cubical boxes were added to the previous 74 cases, which gave a total of 98 cubical boxes. Forty-three rectangular boxes were also added. Thus, a total of 141 cases of RSC single-wall corrugated boxes were included in this study. An ECT test was performed for each box compressed. Some boxes were placed in a temperature/humidity chamber at different combinations of temperature and humidity, while some boxes were placed at room condition, which was about the standard test environment of 73°F and 50% RH. Box dimensions (width/depth/height) ranged from 3" to 36" with a temperature range from 66°F to 104°F, and a humidity range from 48% to 80%.

A feed-forward fully- connected Backpropagation neural network shown in Figure 1 was used. The numbers of input and out neurons were controlled by the collected data, i.e., seven input parameters and one output parameter. The number of hidden neurons was arbitrary and was chosen as 15 in

this work. Other training parameters were shown in Figure 2. The sigmoid function, $y = \frac{1}{1 + e^{-x}}$, was

used to generate an output (y) of each hidden and output cell from a weighted sum of connection weight and input vectors (x). NeuroShell2 [5] was used to train CBU-BOX2 neural network. Figure 3 shows some features of NeuroShell2 software. Once training reached a satisfactory performance, a generic source code was generated for software application development in any programming language. Fourteen samples out of 141 cases of training data are shown in Table 1. In the "Mark" column, "T" was used for 114 training cases and "V" for validation for 27 cases.

Figure 1: CBU-BOX2 Neural Network Configuration

IJAPT- An Open Access Journal (ISSN 2349-6665)

🖳 Learning: E:\NNData2							
<u>F</u> ile <u>T</u> rain <u>H</u> elp							
Complexity (sets defaults):	Neurons and Learning:						
Very simple Complex	Learning rate: 0.1 Inputs: 7						
O Complex and very noisy	Momentum: 0.1 Outputs: 1						
Pattern Selection:	Set number of Hidden Neurons to Default						
O Rotational Random	Hidden neurons: 15						
	Automatically Save Training on: Learning Time: (hhh:mm:ss) 0 best training set 0 best test set 0 no auto save 000:04:42						
There are 114 training patterns.	There are 0 test patterns.						
Learning Epochs: 119362	Calibration Interval: 0						
Last Average Error: 0.002033	37 Last Average Error:						
Min. Average Error: 0.000848	33 Min. Average Error:						
Epochs Since Min: 3814	Events since min:						
More complex architectures, parameters, and indicators are possible outside the Beginner's System.							

Figure 2: Training Parameters

Figure 3: NeuroShell2 Neural Network Development Software

Table	1:	Training	Data	Samples
-------	----	----------	------	---------

TH	WD	DP	HT	EC	ТМ	RH	Р	Mark
0.16	9	9	9	17	83.1	58	341	V
0.145	9	9	9	17	78.4	57	344	Т
0.151	12	12	12	14	79.2	58	411	Т
0.148	12	12	12	14	88.3	57	439	Т
0.151	12	12	12	14	81.1	57	462	Т
0.156	16	16	16	17	89.8	56	589	V
0.156	16	16	16	17	88.2	57	534	Т
0.159	16	16	16	17	87.9	57	592	Т
0.141	4	4	12	15	72.0	53	319	Т
0.141	4	4	12	17	72.5	53	275	Т
0.082	4	4	4	16	71.4	53	232	V
0.082	4	4	4	14	71.8	53	215	Т
0.058	4	4	6	24	72.0	53	355	Т
0.098	4	4	6	17	72.3	53	334	Т

3. Results and Discussion

Figure 4 shows a partial output generated by CBU-BOX2 neural network. For each of the 141 cases, NeuroShell2 compared the predicted strength, i.e., Network(1), and the actual strength, i.e., Actual(1). It also outputted the difference of the two figures, i.e., Act-Net(1).

	tagrid: E:\NNI			-	-				_			_ 0 _ >
- Num	ber of row wi row containi	th variable n	•	if none):		▼ left/right Size: 144 m	-					
Note		ommercial sprea	adsheet and n	nay not load fa				2 Options menu	allows you to	o change the	datagrid call to) your own
	A	B	С	D	E	F	G	н	I	J	K	L
1	Thickness	Width	Depth	Height	ECT	Temp	Humidity	Max Load				
2	(ln)	(in)	(in)	(in)	(lb/in)	(F)	(%)	(lb)				
3	TH	WD	DP	HT	EC	TM	BH	Р	Mark	Actual(1)	Network(1)	Act-Net(1)
4	0.117	5	5	5	31	67.6	48	303	Т	303	315.62	-12.62
5	0.118	3	3	3	36	67.6	48	194	Т	194	211.68	-17.68
6	0.173	9	9	9	35	73.4	49	694	T	694	684.73	9.27
7	0.160	9	9	9	36	73.9	49	709	Т	709	704.04	4.96
8	0.158	9	9	9	36	74.5	49	645	Т	645	695.15	-50.15
9	0.152	9	9	9	36	74.3	49	665	Т	665	692.59	-27.59
10	0.158	9	9	9	36	74.5	49	668	V	668	695.15	-27.15
11	0.118	5	5	5	31	75.0	49	364	Т	364	336.37	27.63
12	0.115	5	5	5	31	74.5	49	354	Т	354	322.68	31.32
13	0.120	5	5	5	31	75.0	49	325	Т	325	346.02	-21.02
14	0.118	5	5	5	31	74.8	49	327	Т	327	335.50	-8.50
15	0.546	3	3	3	36	75.2	49	217	V	217	197.43	19.57
16	0.525	3	3	3	36	75.4	49	214	Т	214	215.66	-1.66
17	0.105	3	3	3	36	74.8	49	200	Т	200	223.88	-23.88
18	0.104	3	3	3	36	75.2	49	216	Т	216	223.56	-7.56
19	0 154	12	12	12	37	70.3	61,	581	т	581	661 81	-80 81
•												•

Figure 4: A Partial Output Generated by NeuroShell2

A generic source code was generated by NeuroShell2 (Appendix A). An Excel spreadsheet developed based on the source code is shown in Figure 5.

	А	В	С	D	E				
2	CBU-BOX2								
3	Version 12.24.2015								
4									
5	netsum								
6	feature2(15)								
7									
8	Note - the following are names of inputs and outp	uts:							
9	Note - inp(1) is TH	inp(1)	0.155						
10	Note - inp(2) is WD	inp(2)	6						
11	Note - inp(3) is DP	inp(3)	6						
12	Note - inp(4) is HT	inp(4)	12						
13	Note - inp(5) is EC	inp(5)	35						
14	Note - inp(6) is TM	inp(6)	66.6						
15	Note - inp(7) is RH	inp(7)	50						
16	Note - outp(1) is P	outp(1)	431						
17									
18	if (inp(1)<0.058) then inp(1) = 0.058								
19	if (inp(1)>0.546) then inp(1) = 0.546								
20	inp(1) = (inp(1) - 0.058) /0.488	INPUT(1)	0.198770492						
21									
22	if (inp(2)<3) then inp(2) = 3								
14 4	N N Shaati (chaati / chaati / 27		4						

Figure 5: CBU-BOX2 Excel Application

The CBU-BOX2 performance was evaluated and compared with McKee formula performance in Table 3, Figure 6, and Appendix B.

Category	Number	<=5%	>5% to 10%	>10% to 20%	>20%	Error Range
	Of Cases	Error	Error	Error	Error	(Average)
CBU-BOX2	141	60	30	35	16	0% – 56.98%
(All Cases)		or 42.55%	or 21.28%	or 24.82%	or 11.35%	(Avg = 9.21%)
McKee	141	13	16	24	88	0.33% – 149.27%
(All Cases)		or 9.22%	or 11.35%	or 17.02%	or 62.41%	(Avg =30.79%)
CBU-BOX2	27	11	4	6	6	1.26% - 40.28%
(Cases with V Mark)		or 40.74%	or 14.81%	or 22.22%	or 22.22%	(Avg = 11.30%)
McKee	27	1	2	7	17	2.08% - 149.27%
(Cases with V Mark)		or 3.70%	or 7.41%	or 25.93%	or 62.96%	(Avg = 37.46%)
CBU-BOX2	43	20	8	11	4	0.06% - 36.49%
(Rectangular)		(46.51%)	(18.60%)	(25.58%)	(9.30%)	(Avg = 8.27%)
McKee	43	2	2	5	34	3.14% - 62.59%
(Rectangular)		(4.65%)	(4.65%)	(11.63%)	(79.07%)	(Avg = 37.05%)
CBU-BOX2	98	40	22	24	12	0% - 56.98%
(Cubical)		(40.82%)	(22.45%)	(24.49%)	(12.24%)	(Avg = 9.47%)
McKee	98	11	14	19	54	0.33% - 149.27%
(Cubical)		(11.22%)	(14.29%)	(19.39%)	(55.10%)	(Avg = 28.04%)

Table 3: CBU-BOX2 & McKee Formula Performance Comparison

Figure 6: CBU-BOX2 & McKee Formula Performance Comparison

4. Conclusion

As seen from Table 3, Figure 6, and Appendix B, CBU-BOX2 significantly outperforms McKee formula, including the unseen cases, i.e., those cases with a "V" mark. Table 3 also shows that CBU-BOX2 performs well for both rectangular and cubical boxes. The 141 cases used to develop CBU-BOX2 cover wide ranges of box sizes and conditions, i.e., width/depth/height ranges from 3" to 36", temperature range from 66°F to 104°F, and humidity range from 48% to 80%.

In order to make the neural network more comprehensive, material (virgin versus recycled) should be added as an input parameter. This can be accomplished by testing recycled corrugated boxes of different sizes and environmental conditions. With additional data, a new version of neural network can be trained and developed.

References

- [1] Aloumi, B., Alnashwan, W., Malasri, S., Othmani, A., Kist, M., Sampson, N., Polania, S., Sanchez-Luna, Y., Johnson, M. and Fotso, R. *Experimental Verification of McKee Formula*. International Journal of Advanced Packaging Technology. 2015. 3 (1) 129-137.
- [2] Malasri, S. Applications of Neural Networks in Transport Packaging. Proceedings of the PACKCON 2015 Conference. 2015. 15-20.
- [3] Malasri, S., Baroth, S., Cherukuri, S., Gurram, S., Vadlapatla, H. and Moats, R. *Estimating Corrugated Box Strength.* Proceedings of the PACKCON 2015 Conference. 2015. 11-14.
- [4] Wadlington, C., Nguyen, N., Zheng, Zhihong, Loving, B. and Malasri, S. Validation of CBU-BOX1 Neural Network. Proceedings of the PACKCON 2015 Conference. 2015. 21-24.
- [5] Ward Systems Group, Inc. NeuroShell2, http://www.wardsystems.com/neuroshell2.asp (As of December 25, 2015)

Appendix A Generic Source Code Generated by NeuroShell2

netsum	netsum = netsum + inp(4) * -0.6943372	netsum = netsum + inp(3) * -4.812082
feature2(15)	netsum = netsum + inp(5) * -0.8443508	netsum = netsum + inp(4) * 0.6202544
Note - inp(1) is TH	netsum = netsum + inp(6) * 1.534944	netsum = netsum + inp(5) * -0.610349
Note - inp(2) is WD	netsum = netsum + inp(7) * -7.410185	netsum = netsum + inp(6) * 0.9391114
Note - inp(3) is DP	feature2(4) = 1 / (1 + exp(-netsum))	netsum = netsum + inp(7) * -5.874597
Note - inp(4) is HT	netsum = -0.6371768	feature2(11) = 1 / (1 + exp(-netsum))
Note - inp(5) is EC	netsum = netsum + inp(1) * -63.56625	netsum = -2.139933
Note - inp(6) is TM	netsum = netsum + inp(2) * -10.43079	netsum = netsum + inp(1) * -14.47617
Note - inp(7) is RH	netsum = netsum + inp (3) * -9.066187	netsum = netsum + inp(2) * -4.172575
Note - outp(1) is P	netsum = netsum + inp(4) * -3.963259	netsum = netsum + inp(3) * 14.07384
if $(inp(1)<0.058)$ then $inp(1) = 0.058$	netsum = netsum + inp(5) * -20.94891	netsum = netsum + inp(4) * -26.67177
if $(inp(1)>0.546)$ then $inp(1) = 0.546$	netsum = netsum + inp(6) * 11.87389	netsum = netsum + inp(5) * 9.429369
inp(1) = (inp(1) - 0.058) / 0.488	netsum = netsum + inp (7) * 31.26726	netsum = netsum + inp(6) * 11.32987
if $(inp(2)<3)$ then $inp(2) = 3$	feature2(5) = 1 / (1 + exp(-netsum))	netsum = netsum + inp(7) * -4.766322
if $(inp(2)>36)$ then $inp(2) = 36$	netsum = -7.49949	feature2(12) = 1 / (1 + exp(-netsum))
inp(2) = (inp(2) - 3)/33	netsum = netsum + inp(1) * 0.6761363	netsum = -0.2524938
if (inp(3)<3) then inp(3) = 3	netsum = netsum + inp(2) * -7.165943	netsum = netsum + inp(1) * -1.072484
if (inp(3)>36) then inp(3) = 36	netsum = netsum + inp(3) * -5.918962	netsum = netsum + inp(2) * 8.087201E-02
inp(3) = (inp(3) - 3) /33	netsum = netsum + inp(4) * 2.023466	netsum = netsum + inp(3) * 20.43565
if (inp(4)<3) then inp(4) = 3	netsum = netsum + inp(5) * -0.4293676	netsum = netsum + inp(4) * -11.70324
if (inp(4)>36) then inp(4) = 36	netsum = netsum + inp(6) * 8.238652E-03	netsum = netsum + inp(5) * 0.3484668
inp(4) = (inp(4) - 3) /33	netsum = netsum + inp(7) * -5.399711	netsum = netsum + inp(6) * -56.12461
if (inp(5)<12) then inp(5) = 12	feature2(6) = 1 / (1 + exp(-netsum))	netsum = netsum + inp(7) * -2.363098
if (inp(5)>40) then inp(5) = 40	netsum = -9.673411	feature2(13) = 1 / (1 + exp(-netsum))
inp(5) = (inp(5) - 12) /28	netsum = netsum + inp(1) * 57.20142	netsum = -3.89846
if (inp(6)<66) then inp(6) = 66	netsum = netsum + inp(2) * 52.36789	netsum = netsum + inp(1) * -1.38506
if (inp(6)>104) then inp(6) = 104	netsum = netsum + inp(3) * 38.6922	netsum = netsum + inp(2) * -5.276136
inp(6) = (inp(6) - 66) /38	netsum = netsum + inp(4) * -86.51951	netsum = netsum + inp(3) * -3.536175
if (inp(7)<48) then inp(7) = 48	netsum = netsum + inp(5) * 0.2131806	netsum = netsum + inp(4) * 0.1051574
if (inp(7)>80) then inp(7) = 80	netsum = netsum + inp(6) * 7.545617	netsum = netsum + inp(5) * 1.241501
inp(7) = (inp(7) - 48) /32	netsum = netsum + inp(7) * -31.17518	netsum = netsum + inp(6) * 3.577389

IJAPT- An Open Access Journal (ISSN 2349-6665)

netsum = -7.247163	feature2(7) = 1 / (1 + exp(-netsum))	netsum = netsum + inp(7) * -6.608476
netsum = netsum + inp(1) * -7.162368E-02	netsum = -6.69485	feature2(14) = 1 / (1 + exp(-netsum))
netsum = netsum + inp(2) * -6.672145	netsum = netsum + inp(1) * -2.424634	netsum = -7.510636
netsum = netsum + inp(3) * -5.509887	netsum = netsum + inp(2) * -5.845432	netsum = netsum + inp(1) * 2.029926
netsum = netsum + inp(4) * 1.965163	netsum = netsum + inp(3) * -3.707195	netsum = netsum + inp(2) * -7.943251
netsum = netsum + inp(5) * -0.1127764	netsum = netsum + inp(4) * -0.2126636	netsum = netsum + inp(3) * -7.275569
netsum = netsum + inp(6) * -0.3749207	netsum = netsum + inp(5) * -0.6274015	netsum = netsum + inp(4) * 2.87489
netsum = netsum + inp(7) * -6.057019	netsum = netsum + inp(6) * 1.344668	netsum = netsum + inp(5) * -1.476773
feature2(1) = 1 / (1 + exp(-netsum))	netsum = netsum + inp(7) * -6.710152	netsum = netsum + inp(6) * 0.559886
netsum = -6.879015	feature2(8) = 1 / (1 + exp(-netsum))	netsum = netsum + inp(7) * -3.235952
netsum = netsum + inp(1) * -3.016899	netsum = -7.186853	feature2(15) = 1 / (1 + exp(-netsum))
netsum = netsum + inp(2) * -5.380744	netsum = netsum + inp(1) * -1.09149	netsum = -0.2801921
netsum = netsum + inp(3) * -3.580803	netsum = netsum + inp(2) * -6.539968	netsum = netsum + feature2(1) * -0.4374026
netsum = netsum + inp(4) * -0.4355183	netsum = netsum + inp(3) * -4.775326	netsum = netsum + feature2(2) * 3.453336E-02
netsum = netsum + inp(5) * -0.9137687	netsum = netsum + inp(4) * 0.8580441	netsum = netsum + feature2(3) * 1.700875
netsum = netsum + inp(6) * 1.621481	netsum = netsum + inp(5) * -0.1386947	netsum = netsum + feature2(4) * -0.1481685
netsum = netsum + inp(7) * -7.314968	netsum = netsum + inp(6) * 0.6256868	netsum = netsum + feature2(5) * -0.9338183
feature2(2) = 1 / (1 + exp(-netsum))	netsum = netsum + inp(7) * -6.080272	netsum = netsum + feature2(6) * -0.5930923
netsum = 2.58671	feature2(9) = 1 / (1 + exp(-netsum))	netsum = netsum + feature2(7) * 1.477526
netsum = netsum + inp(1) * -56.1168	netsum = -1.865983	netsum = netsum + feature2(8) * 0.1232549
netsum = netsum + inp(2) * 19.70152	netsum = netsum + inp(1) * 1.98675	netsum = netsum + feature2(9) * -0.5360605
netsum = netsum + inp(3) * 18.78237	netsum = netsum + inp(2) * -11.25155	netsum = netsum + feature2(10) * -5.806566
netsum = netsum + inp(4) * -23.49325	netsum = netsum + inp(3) * -10.4184	netsum = netsum + feature2(11) * 0.4093191
netsum = netsum + inp(5) * 13.29584	netsum = netsum + inp(4) * 1.585183	netsum = netsum + feature2(12) * -2.210154
netsum = netsum + inp(6) * -8.186071	netsum = netsum + inp(5) * -0.5645384	netsum = netsum + feature2(13) * -2.185017
netsum = netsum + inp(7) * -13.79474	netsum = netsum + inp(6) * 1.33543	netsum = netsum + feature2(14) * 2.029893
feature2(3) = 1 / (1 + exp(-netsum))	netsum = netsum + inp(7) * -3.745443	netsum = netsum + feature2(15) * -6.077104E-03
netsum = -6.930517	feature2(10) = 1 / (1 + exp(-netsum))	outp(1) = 1 / (1 + exp(-netsum))
netsum = netsum + inp(1) * -3.43881	netsum = -6.47867	
netsum = netsum + inp(2) * -5.543357	netsum = netsum + inp(1) * -0.8656681	outp(1) = 810 * (outp(1)1) / .8 + 103
netsum = netsum + inp(3) * -3.266341	netsum = netsum + inp(2) * -5.996781	

Appendix B Graphical Comparison of Actual, CBU-BOX2, and McKee Formula for 141 Cases

