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Abstract This article presents the use of the Continuous Wavelet Transform (CWT) for the analysis 

of shock and vibration measurements. Acceleration measurements from pallets dropped from five 

different heights and vibration measurements of pallets are acquired in controlled laboratory settings. 

Power spectral density (PSD) as estimated from CWT is compared to the Shock Response 

Spectrum as well as the PSD estimated from Fourier Transform (FT) and Short Time Fourier 

Transform (STFT). CWT overcomes the drawbacks of Fourier Transform in analyzing non-stationary 

signals such as shock and vibration data. CWT also provides more improved time-frequency 

resolution than STFT. The article presents results that indicate that CWT can be used as an effective 

spectral analysis tool for shock and vibration measurements. 

Keywords Continuous Wavelet Transform; Fourier Transform; Shock Response Spectrum; 

Vibration 

 

1. Introduction 

 

Packaged products often undergo shock and vibration during distribution. An accurate simulation of 

the shock and vibration phenomenon enables effective testing of packaging components and 

provides direction for further improvement of packaging and transportation design. For this purpose, 

understanding the spectral (frequency) components that are present as a result of stimulus caused 

by shock and vibration is important. A commonly used spectral analysis tool in the area of signal 

processing is the Power Spectral Density (PSD). Conventional PSD is computed using the Fourier 

Transform (FT) which assumes that any signal is composed of a weighted summation of sinusoids of 

various frequencies [1]. For the signal being analyzed, the PSD represents the power associated 

with each of these sinusoids. The draw back in the use of PSD based on FT is its inability to 

accurately represent signals that are non-stationary [2]. Non-stationary signals contain different 
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frequency components at different periods of time. Shock is a transient event defined as a 

mechanical disturbance characterized by a rise and decay of acceleration in a short period of time, 

while vibrations are random oscillations about a reference point, usually for a longer period of time 

[3]. Given the definitions and observations made through measurements, shock and vibration are 

considered non-stationary processes. Short Time Fourier Transform (STFT) attempts to address 

non-stationarity by estimating the spectral content of the signal over small segments of the signals 

using a sliding window. However, the time-frequency uncertainty principle limits the accuracy of 

STFT. The Shock Response Spectrum (SRS) is another approach to analyze shock data that 

assumes a model containing a set of single degree-of-freedom, mass-damper-spring oscillator 

subsystems that are excited by base motion [4]. For each subsystem, the natural frequency and 

maximum amplitude of response is determined [3]. The plot of maximum amplitude versus natural 

frequency is the SRS. Although originally developed for transients associated with shock, SRS is 

also used for analysis of vibration [5]. Wavelet Transform maps a temporal signal on to a 3-D time-

frequency space and is used extensively to analyze non stationary signals [6, 7]. In this article, a 

technique applying Continuous Wavelet Transform (CWT) is used for spectral analysis of shock and 

vibration. The technique measures the PSD based on the CWT coefficients. CWT accounts for the 

non-stationary properties of shock and vibration by not only computing the frequency components 

present in the signal, but it also computes the time intervals when those frequencies are present. 

The time-frequency localization properties of wavelet basis functions in conjunction with the 

mechanism of the transform process, makes CWT an extremely effective spectral analysis tool.  

 

The subsequent sections in this article are as follows: In section 2, data collection methods, signal 

processing algorithms and software tools are described. Section 3 discusses the results of the 

analysis of the data and section 4 presents the conclusions drawn from this research. 

 

2. Materials and Methods 

 

In this section, first, a description of the shock and vibration experiment is provided. Next, the signal 

processing techniques including FT, STFT, CWT, PSD and SRS for analyzing the data are 

presented. Finally, the software tools to implement the analysis are discussed. 

 

2.1. Data Collection Procedure 

 

For recording shock data, a Lansmont Saver 3M30 recorder was used to measure acceleration 

versus time at 1000 samples/sec along three directions. It was attached to a pallet, which was raised 

and dropped from a certain height. In this experiment, a wooden pallet was dropped from 2 inches, 4 

inches, 6 inches, 8 inches and 10 inches. Figure 1 shows the setup of the shock experiment. For 

each height, acceleration versus time was measured through the three channels of the shock 

recorder. Channel 3 measured the acceleration along the direction of the drop, while the other two 

channels measuring acceleration along the other two orthogonal directions. For measuring 

vibrational data, a wooden pallet was mounted on a vibration platform as shown in Figure 2. The 

Lansmont recorder was used to measure the vibrational acceleration versus time signal sampled at 

1000 samples/sec along three orthogonal directions (x, y and z axis). A truck vibration simulation in 

accordance with ASTM D 4169 Truck Level I was utilized. 
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Figure 1: Experimental Setup for Collection of Shock Data 

 

 
 

Figure 2: Experimental Setup for Collection of Vibration data 

 

2.2. Signal Processing/Modeling Techniques 

 

In this sub-section, the theoretical background and software tools to compute FT, STFT, CWT as 

well as the calculation of PSD for each of the stated signal processing technique are presented. In 

the context of this article, the time varying function )(tx represents the acceleration versus time 

signal associated with the shock or vibration data. Further, the signal )(tx is normalized by 

subtracting its mean value from the signal. The mean value corresponds to the zero frequency or the 

DC component. Thus the normalization prevents the possibility of the zero frequency component 

from dominating the PSD plots shown in this article. This typically improves clarity of the figures 

without loss of relevant information. 

 

2.2.1. Fourier Transform 

Fourier Transform of a temporal signal )(tx is given by [8]: dtetxfX tj






 )()( , where        

and j is the complex number     . )( fX  is the representation of the signal )(tx in the Fourier or 
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frequency domain. Fourier transform expresses the signal )(tx as a weighted sum of the basis 

function:                       . The equation can be interpreted as follows. Fourier 

transform in essence decomposes the signal )(tx into constituent sinusoids and the transform finds 

amplitude and phases of these constituent sinusoids. For a specific value of  , the signal )(tx is 

correlated with the basis function:                 . The complex correlation coefficient obtained 

for that value of   is the corresponding Fourier Transform coefficient. The complex coefficient 

represents the amplitude and phase of the sinusoid of frequency  . This process is repeated for 

values of   ranging from    to  . 

 

2.2.2. Short Time Fourier Transform 

 

The Short Time Fourier Transform (STFT) is a modification of the conventional Fourier Transform. In 

STFT, the time domain signal, )(tx , is broken into segments. Fourier Transform of each of these 

segments is the STFT. The process of dividing )(tx  into segments is achieved by multiplying the 

signal with a sliding window function       . The parameter τ   controls the shift or the slide of the 

window g(t) . In this research, a Hanning window of size 10 was used to represent g(t). 

STFT of a signal )(tx is given by [9]:   




 dtetgtxX tj )()(, , where       is 

frequency in radians/second. The plot of STFT coefficients for the signal )(tx is a 3D plot with the x-

axis representing the time shift τ    and frequency represented on the y-axis. The amplitude of the 

STFT coefficients is represented on the z-axis.  

 

2.2.3. Continuous Wavelet Transform 

 

Wavelet Transform represents a signal )(tx  as a weighted sum of basis functions referred to as 

wavelets. The weights correspond to the wavelet coefficients. The Continuous Wavelet Transform 

(CWT) of a signal )(tx is given by [10]:    




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 
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txsX
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)(, , where   is the translation 

parameter and   is the scale parameter. The basis function      is referred to as a mother wavelet. 

      is the complex conjugate of     . The translation parameter,   , shifts      in time and the 

scale parameter, s, controls the temporal width of     . The scale parameter is inversely related to 

frequency. An example of a mother wavelet function is a Morlet function. The Morlet wavelet is a 

complex valued function given by:  222
0
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. The envelope factor zo controls the 

number of oscillations in the wavelet with a typical value of zo = 5 [11]. The Morlet basis function is 

used in this article for the computation of CWT.  

 

The CWT, in simpler terms, is the correlation of the signal )(tx  with various shifted and 

stretched/shrunken versions of the mother wavelet     . It is this ability to manipulate the width 

(stretching or shrinking) of the mother wavelet and shift it along the time axis that makes the CWT 

time-frequency analysis effective. The plot of CWT coefficients for the signal )(tx is a 3D plot. The x-

axis corresponds to the time shift, τ   . The y-axis represents frequency f or scale s. The amplitude 

of the CWT coefficients is represented by the z-axis.  
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2.2.4. Power Spectral Density 

 

Power Spectral Density (PSD) of a signal represents the distribution of power over various 

frequencies that compose the signal. It is the average or expected value of the Fourier Transform of 

the signal )(tx computed over an infinite time period. PSD of a signal )(tx is given by:  

 


















 

 
2

2
)(

2

1
lim)(

2

1
lim)( dtetx

T
EfX

T
EfS jwt

T

TTT
x  

 

T refers to the period over which the statistical average E{} of the Fourier Transform, X(f), is 

computed. The above equation can be implemented using computer algorithms based on 

techniques such as the Welch’s Method. Welch’s method computes the PSD of a digitized signal 

     using the following steps [12]: 

 

 Partition the signal      in K overlapping segments, each of length L, with M points 

overlapping between adjacent segments. 

 

 Next, each segment,       , is multiplied by a window function W and the modified 

periodogram is computed using an N-point Discrete Fourier Transform (DFT) as shown in 

equation below. 
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Here n = 0, 1, 2, ... N-1 and k = 0, 1, 2, ... K-1. N is the number DFT points and K is the 

number of segments used in partitioning the data,     . A particular value of n corresponds 

to a frequency     
   

 
 , where    is the sampling frequency of the signal. An example of a 

window function is: 
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 The PSD is then estimated using the equation 
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The implementation of DFT is commonly done using the Fast Fourier Transform. PSD based on 

STFT and CWT is estimated by simply computing the magnitude squared of the respective 

transform coefficients. In this article, with regard to the PSD plots shown in the results section, FT 

based plots are 2-D figures with PSD on the y-axis and frequency on the x-axis. PSD from STFT and 
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CWT are 3-D figures with PSD on the z-axis, while time and frequency are on the x and y axes 

respectively. 

 

2.2.5. Shock Response Curve 

 

In order to compute the Shock Response Curve (SRS), it is assumed that the system is composed 

of a set of single degree-of-freedom oscillator subsystems. Each subsystem has its own frequency 

response that peaks at its natural frequency. The acceleration versus time data measured from a 

shock or vibration experimentation is then filtered by using the frequency response of the SDOF 

subsystems. The maximum amplitude at the output of the filtering processing for each SDOF 

subsystem is noted. SRS is a plot of the maximum amplitude versus the natural frequency of each of 

the SDOF subsystem [13].  

 

2.3. Software Analysis Tools 

 

The shock and vibration data collected in the experiments are processed using Matlab programming 

language to compute PSD from FT using Welch’s Method, STFT and CWT. SRS was computed 

using software developed by Tom Irvine based on the Kelly Richman algorithm [14, 15]. 

 

3. Results and Discussion 

 

Figure 3 shows the acceleration, PSDs and SRS for the shock experiment for a 2 inch drop along 

the direction of the drop (z axis). Figure 4 shows the acceleration, PSDs and SRS for the vibration 

experiment along the z axis. Figures 3 and 4 are exemplar plots and the observations derived 

through these are consistent for other measurements from the experiment as well. A caveat needs 

to be pointed out about SRS. SRS is calculated by computing the maximum amplitude of the 

response for a set of SDOF oscillators. Hence, the motivation and mathematical background 

associated with SRS is different from that of other signal processing techniques used in this article. 

In comparing the various techniques, it can be observed that PSD from FT and SRS are 2-D plots 

that represent frequency domain information about the signal and do not capture temporal 

information. The PSD from STFT and CWT are 3-D plots that capture both temporal and frequency 

domain information. All the techniques identify the dominant frequency at about 75 Hz. For FT based 

PSD and SRS, there is no information about the time periods when these frequencies are present. 

Both STFT and CWT indicate that the dominant frequency component occurs approximately in a 

temporal region around 0.2 seconds. Uncertainty principles in time-frequency resolution dictates that 

the time instant when a specific frequency signal occurred can only be estimated up to certain 

accuracy. This means that temporal accuracy is always gained at the cost of losing frequency 

localization and vice versa. STFT shown in Figure 3 was computed with high temporal resolution. As 

a result, the frequency resolution of STFT is compromised and this is represented by the 

exaggerated presence of frequency components in the 100 Hz - 200Hz range. If STFT were to be 

computed with emphasis on frequency resolution, the temporal resolution would be lost and 

localization along the temporal axis would deteriorate. On the other hand, by controlling the scale 

and the shift parameters of the wavelet basis function for computing the transform, PSD from CWT 

innately balances both temporal and frequency resolutions. This is apparent from the CWT PSD in 

Figure 3, which shows better localization along the time and frequency axis around 0.2 seconds and 

75Hz (the dominant frequency). The presence of these frequencies is also noticed, with lower 

power, around 0.3 seconds in both CWT and STFT. Similarly, inferences can be made for vibrational 

data analysis as represented in Figure 4. The vibrational data analysis shows strong frequency 

components in the frequency band less than 100 Hz. CWT and STFT show that these frequency 

components occur around 0.1 seconds and 0.2 seconds. Given the advantages in terms of time-

frequency representations of STFT and CWT, both techniques, however, are computationally 

challenging when compared to FT. An alternative to CWT is the discrete wavelet transform (DWT). It 
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should be noted that the disadvantage with DWT is that, in order to achieve computational efficiency, 

DWT uses truly discrete time and frequency locations in its computations by algorithmically skipping 

certain locations on the time-frequency plots. This makes DWT plots less intuitive for visualization 

and interpretation in its raw form.  

 

 
(a) 

 
(b) 

 
(c)  

(d) 

 
(e) 

 
Figure 3: Data Measurement and Analysis for 2 Inch Pallet Drop Measured in the Direction of the Drop. Shock 

Acceleration versus Time Measurement (a), SRS (b), PSD from FT (c), PSD from STFT (d), and PSD from 

CWT (e) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 4: Data Measurement and Analysis of Vibration along the Z-Axis. Vibrational Acceleration Versus Time 

Measurement (a), SRS (b), PSD from FT (c), PSD from STFT (d), PSD from CWT (e) 

 

4. Conclusion 

 

The focus of this article was to present CWT as a tool to analyze the time-frequency characteristics 

of shock and vibration and compare its analytical effectiveness to conventional techniques such as 
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SRS and PSD based on FT. In a controlled laboratory setting, acceleration of wooden pallets 

associated with shock and vibration was measured. PSD based on FT, STFT and CWT was 

computed. SRS was also calculated from the shock and vibrational data. Results of the analysis 

show that CWT has the ability to provide optimum joint frequency and time resolution. In using STFT 

there is a tradeoff between temporal and frequency resolutions. FT provides solely frequency 

domain representation of the signal with no information about time periods when the frequency 

components occur. SRS on the other hand provides a plot of maximum amplitude response versus 

natural frequencies by assuming a set of subsystems with SDOF. This article concludes that with the 

ability to present both time and frequency information with optimum localization, CWT is an effective 

tool for modeling non-stationary signals such as shock and vibration.  
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