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Abstract The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) was recently established 

to provide airborne lidar data coverage on a national scale. As part of a broader research effort of the 

USGS to develop an effective remote sensing-based methodology for the creation of an operational 

biomass Essential Climate Variable (Biomass ECV) data product, we evaluated the performance of 

airborne lidar data at various pulse densities against Landsat 8 satellite imagery in estimating above 

ground biomass for forests and woodlands in a study area in east-central Arizona, U.S. High point 

density airborne lidar data, were randomly sampled to produce five lidar datasets with reduced 

densities ranging from 0.5 to 8 point(s)/m
2
, corresponding to the point density range of 3DEP to

provide national lidar coverage over time. Lidar-derived aboveground biomass estimate errors showed 

an overall decreasing trend as lidar point density increased from 0.5 to 8 points/m
2
. Landsat 8-based

aboveground biomass estimates produced errors larger than the lowest lidar point density of 0.5 

point/m
2
, and therefore Landsat 8 observations alone were ineffective relative to airborne lidar for

generating a Biomass ECV product, at least for the forest and woodland vegetation types of the 

Southwestern U.S. While a national Biomass ECV product with optimal accuracy could potentially be 

achieved with 3DEP data at 8 points/m
2
, our results indicate that even lower density lidar data could be

sufficient to provide a national Biomass ECV product with accuracies significantly higher than that from 

Landsat observations alone.  

Keywords 3DEP; Aboveground Biomass; Essential Climate Variable (ECV); Landsat; Lidar; Point 

Density; Quality Level  

1. Introduction

Accurate estimation, mapping and monitoring of the amount of carbon stored in terrestrial vegetation is 

crucial to reliable analysis, understanding and projection of the global carbon cycle and its interactions 

with land use and climate change. Aboveground biomass is defined as an Essential Climate Variable 

(ECV) by the Global Climate Observing System (GCOS) (Bojinski et al., 2014). An accurate 

assessment of the amount of vegetation biomass is crucial for quantifying carbon stocks and the 

potential of vegetation to sequester carbon, which can have a direct influence on local, regional and 

Open Access Research Article 

http://technical.cloud-journals.com/index.php/IJARSG/article/view/Tech-559


IJARSG– An Open Access Journal (ISSN 2320 – 0243)  

 

International Journal of Advanced Remote Sensing and GIS 1484 

 

global climate. Aboveground biomass is a common input variable in ecosystem process and climate 

models, but large uncertainties as well as infrequent updating of biomass data are major potential 

sources of uncertainties in the model outputs.  

 

It is widely recognized that active remote sensing systems, especially light detection and ranging 

(lidar), represent the future of large-scale estimation and mapping of terrestrial biomass (Chen et al., 

2012; Evans et al., 2009; Zhao et al., 2009; Hall et al., 2005; Lefsky et al., 2002; Su et al., 2016; 

Gregoire et al., 2016), potentially supporting the operational production of a Biomass ECV product at 

the national scale. Lidar is an active remote sensing system that can measure the three-dimensional 

(3-D) structural characteristics of trees and other vegetation which are not directly captured by passive 

optical land imaging systems such as Landsat. Such 3-D structural information is critical for improved 

aboveground biomass estimation with greater accuracy (Dubayah and Drake, 2000; Gregoire et al., 

2016). Past and ongoing research efforts have developed algorithms that use airborne lidar to quantify 

forest inventory variables (generally on local spatial scales), such as tree height (Hyyppa et al., 2008; 

van Leeuwen and Nieuwenhuis, 2010; Næsset, 1997), stand structure (Lefsky et al., 2005; Næsset et 

al., 2005; Kane et al., 2010), leaf area index and cover (Morsdorf et al., 2006; Jensen et al., 2006), 

timber volume (Yu et al., 2004; Maltamo et al., 2006), and biomass (Boudreau et al., 2008; Lim and 

Treitz, 2004; Næsset and Gobakken, 2008; Lefsky et al., 2002; Zhao et al., 2009). Given lidar data 

with sufficiently high pulse density, determination of these fundamental biometric variables (tree 

height, tree density, fractional cover, and stand structure) with a low level of uncertainty is relatively 

straightforward. Yet, using these variables to estimate aboveground biomass introduces potentially 

large errors due to additional complexities and uncertainties, such as field sampling design, model 

selections and the accuracy of the allometric equations that are used in the estimation procedure 

(Gregoire et al., 2016).  

 

In 2012, USGS initiated the 3D Elevation Program (3DEP), leveraging partnerships with other federal 

and state agencies, aiming to provide consistent, standardized national lidar coverage in the coming 

years (Sugarbaker et al., 2014). According to the National Enhanced Elevation Assessment study, the 

current level of lidar data availability is at a relatively low quality level (QL3) of <1 points/m
2
 on a 25-

year repeat cycle, although the quality level that provides the largest user satisfaction is high quality 

(QL1) at 8 points/m
2
 on an annual cycle. However, high data quality / pulse density comes with high 

data acquisition cost, and therefore the most efficient cost-benefit recommendation is to acquire quality 

level 2 (QL2) at 2 points/m
2
 lidar data on an 8-year cycle for the US (Sugarbaker et al., 2014). 

Typically, the lower the density of laser pulses, the less comprehensive the tree structure 

characteristics captured by the laser scanning systems, and therefore the higher the uncertainty of 

aboveground biomass estimates derived from lidar for individual trees. Yet, for the purpose of a 

Biomass ECV, it is less critical to accurately depict structure characteristics of each individual tree, and 

therefore lower pulse density at plot and stand levels can be a compromise to capture larger areas for 

a national scale operational product.  

 

While the effectiveness of using lidar to map vegetation and estimate biomass has been 

demonstrated, the high cost of airborne lidar data acquisition poses practical limitations on their 

application to large-scale biomass mapping. Contrary to the high cost and sporadic acquisition of lidar, 

Landsat satellites provide wall-to-wall data coverage every 8 days with free access, and can be 

potential candidates for operational products such as a Biomass ECV. Landsat 8, the latest in the 

series of Landsat satellites, maintains similar spectral bands as the Operational Land Imager, and 

improvements in its radiometric performance (greater signal-to-noise ratio and 12-bit quantization) 

make it potentially more effective for mapping vegetation. However, the lack of 3-D structural 

information from Landsat data leads to relatively low accuracy in estimating aboveground biomass 

over large geographic areas (Foody et al., 2003; Hall et al., 2006; Lu, 2005; Avitabile et al., 2012). In 

the meantime, without suitable accommodations or modifications, the long acquisition cycle of the 

current 3DEP program and low point density may prevent development and implementation of a 
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feasible Biomass ECV product in the near future. Here, we aim to facilitate informed decision making 

and planning for a Biomass ECV product by examining the key factors that underlie this issue in a pilot 

study area. Specifically, we used our established research field sites in east-central Arizona (Wu et al., 

2015) to (1) evaluate the impacts of different density/quality levels lidar data on aboveground biomass 

estimation accuracy, (2) compare the accuracies of aboveground biomass estimates derived from lidar 

and Landsat 8 data, and (3) consider the implications of our results for the opportunities and feasibility 

of an operational national Biomass ECV product. 

 

2. Methods 

 

2.1. Study Area 

 

The study area is located near Point of Pines on the San Carlos Apache Reservation in east-central 

Arizona (33.39⁰ N, 109.82⁰ W, 1829 – 2134 m ASL). Vegetated landscapes in the study area are 

primarily comprised of forests and woodlands dominated by ponderosa pine (Pinus ponderosa), two-

needle pinyon (Pinus edulis), alligator juniper (Juniperus deppeana), Arizona white oak (Quercus 

arizonica), and gambel oak (Quercus gambelii). 39 square plots of 30 m by 30 m each were 

established within the study area, including 21 woodland plots and 18 forest plots respectively. 

Ponderosa pine forests are continuous and extend throughout the study area; whereas pinyon, juniper 

and oak species are inter-mixed at lower elevation. Mixed woodland species plots usually have higher 

tree density and lower biomass than forest plots, which is consistent with the landscape characteristics 

of the study area.  

 

2.2. Field Biometrics 

 

Field biometric data were collected during three intensive field campaigns from June to August in 

2013. To determine the corner coordinates of each plot, two survey-grade Global Positioning System 

(GPS) receivers were used; a base station GPS receiver was placed near each plot location, with a 

roving GPS receiver used to accurately map the plot corner points, referenced to the base station 

receiver. Tree species were recorded and individual tree heights were measured using a Nikon 

Forestry Pro Laser Range Finder 8381 for tall and mature trees, and an extension pole marked with 

0.1 m increments for small and young trees. Tree heights were measured twice and the final tree 

height for each tree was determined as the average of the two measurements. Both methods achieved 

vertical accuracies of 0.3 m. The diameter at breast height (dbh) was measured at 1.37 m height for 

ponderosa pines, and no trees smaller than 1.4 m in height were included in the measurements. For 

woodland species, the root collar diameter of each stem was measured, and the equivalent diameter 

at root collar (edrc) was computed using the equation (1) below: 

 

edrc = ,                                                (1) 

 

Where a, b, …, x are diameter at root collar for each stem that is 3.8 cm or larger (Chojnacky and Ott, 

1986).  

 

Biomass of each individual tree measured in the field was calculated using validated species-specific 

allometric equations derived from field studies (Clary and Tiedemann, 1986; Grier et al., 1992; Kaye et 

al., 2005; Navar, 2009) in similar environments.  
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2.3. Remote Sensing Data 

 

2.3.1. Airborne Lidar 

 

Airborne lidar data were acquired through the U.S. Geological Survey Geospatial Product and Service 

Contract (GPSC), and the data collection was completed by Woolpert, Inc. (Dayton, OH). The lidar 

data were acquired using a Leica ALS70 Multiple Pulses in Air (MPiA) lidar sensor, onboard a Cessna 

402 on August 8 – 9th, 2013 (Table 1). The Leica ALS70 system used in this study uses a laser that 

operates in the near infrared spectral region (1064 nm). A total of 52 flight lines were flown to provide 

comprehensive coverage of the study area at a specified minimum pulse density that equated to an 

average of 12 points/m
2 

in open areas. When the sensor calibration, data acquisition, and GPS 

processing phases were complete, Woolpert then processed individual flight lines to derive a raw point 

cloud file in LASer (LAS) 1.2 format. Ground and non-ground classes were created using the 

calibrated point cloud files, and survey ground control data were imported and incorporated into an 

accuracy assessment. Woolpert calculated the vertical accuracy by comparing the lidar bare earth 

points to the ground surveyed QA/QC points, and reported a vertical accuracy of 0.072 m in flat, open 

areas, along with a bare-Earth DEM accuracy within 0.068 m, both at a 95 percent confidence level. 

 

Table 1: Summary of Airborne Lidar Sensor and Flight 

 

Parameter Performance 

Post spacing (minimum) 0.3 m 

Aboveground level average flying height 1,829 m 

Mean sea level average flying height 3,627 m 

Average ground speed 249 kph 

Field of view (full) 10 degrees 

Pulse rate 292.0 kHz 

Scan rate 72.6 Hz 

Side lap (minimum) 25% 

 

2.3.2. Landsat 8 Satellite Imaging 

 

Cloud-free Landsat 8 surface reflectance data for September 24th, 2013 were acquired from USGS 

Earth Resources Observation and Science (EROS) Center Science Processing Architecture (ESPA). 

Normalized Difference Vegetation Index (NDVI) is the most widely used vegetation index for mapping 

vegetation, taking advantage of strong absorption at the visible spectral region and strong reflectance 

at the near-infrared spectral region of chlorophyll in the leaves (Rouse et al., 1974; Sellers, 1985; 

Tucker, 1979). NDVI has been used to estimate biomass (Labrecque et al., 2006; Zheng et al., 2004) 

as it is a sensitive indicator of canopy structure and leaf chemical content and leaf area, and is 

especially useful in low-biomass dryland forest and woodland ecosystem with low leaf area index 

(Gamon et al., 1995) where saturation of the NDVI is not typically observed. NDVI was computed 

using the red (R) and near-infrared (NIR) bands as (NIR - R)/(NIR + R) using Landsat 8 surface 

reflectance data from ESPA. Surface reflectance of all 8 visible, near-infrared and shortwave infrared 

bands as well as computed NDVI were used to estimate aboveground biomass for forests and 

woodlands in our study area. 

 

2.4. Aboveground Biomass Estimation 

 

2.4.1. Lidar Derived Metrics  

 

Because of the flight-lines overlap, superfluous lidar points were ignored, ensuring a more 

homogenous sampling density throughout the study area. To isolate the impacts of pulse density on 

various forest height metrics, a random thinning approach was applied to the original dataset at 12 



IJARSG– An Open Access Journal (ISSN 2320 – 0243)  

 

International Journal of Advanced Remote Sensing and GIS 1487 

 

points/m
2
 to create a gradient of lower point densities at 8, 4, 2, 1 and 0.5 point(s)/m

2
, respectively 

(Figure 1). For each reduced density point cloud dataset, ground points were classified and tree 

heights were then calculated relative to the ground surface. A common approach to generate 

aboveground biomass estimates from remote sensing is to establish statistical regression between 

laser height measurements and ground sampling plots (Gregoire et al., 2016). Various descriptive 

statistical metrics commonly used for estimating aboveground biomass (Lefsky et al., 1999; Means et 

al., 1999; Næsset, 1997; Zhao et al., 2009) were calculated from the entire vertical profile of the 

vegetation lidar returns to best capture the relationship between the lidar pulse data and field-based 

estimates of biomass at the plot level. All lidar data processing was conducted using LAStools 

(http://lastools.org) developed by Martin Isenburg (Isenburg and Schewchuck, 2007; Hug et al., 2004). 

Basic height statistics metrics, including maximum, minimum, mean, standard deviation, skewness, 

kurtosis, and quartic average, were computed from the canopy height point cloud data for each field 

plot. Canopy cover and tree density were computed from the number of vegetation returns versus total 

returns within each plot. Height percentiles can also be effective in capturing the different levels of 

laser beam penetration through the tree canopies and therefore reflect the structure characteristics of 

the vegetation, and have been demonstrated to be very useful in estimating aboveground biomass 

(Lim and Treitz, 2004). Using LAStools, 10
th
, 25

th
, 50

th
, 75

th
, and 90

th
 percentiles of height were also 

calculated from the canopy height point cloud.  

 

 
 

Figure 1: Lidar Point Clouds at (A) 8 Points/m
2
 And (B) 2 Points/m

2
 From Side View (Top) and Top View 

(Bottom), Corresponding to 3DEP Quality Level 1 (QL1) And QL2, Respectively 

 

2.4.2. Regression Models 

 

Multiplicative models were estimated as linear regressions using logarithmic transformations for 

predictor metrics and field-based aboveground biomass estimates, which have been found to be 

suitable to estimate vegetation biomass (García et al., 2010; Næsset and Bjerknes, 2001; Næsset and 

Økland, 2002). The multiplicative model was formulated as equation (2): 
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AGB = a0p1
a1

p2
a2

 p3
a3

,                                                         (2) 

 

Whereas the linear form of equation (2) after logarithmic transformations is shown as equation (3): 

 

lnAGB = lna0 + a1lnp1 + a2lnp2 + a3lnp3,                                (3) 

 

Where AGB is the field-based aboveground biomass in Mg ha
-1

, and pi is the predictor variable 

selected from the predictor metrics. Such linear regression models were created separately using lidar 

height derived metrics and Landsat 8 derived predictors.  

 

Stepwise selection was used to select predictor variables to be included in the linear regression 

models. This method includes the predictor variables showing the highest coefficient of determination 

(R
2
) with the estimator variable, and additional variables were incorporated into the model based on an 

F-test under the normality assumption of the variables, which was met using logarithmic 

transformations. To avoid overfitting the models and to identify the most critical predictors for 

aboveground biomass, a maximum of three predictors can be selected in a single regression model. 

The variance inflation factor (VIF) was used to identify the existence of collinearity in the selected 

model. It is commonly accepted that VIF values above 10 indicate multicollinearity which causes 

standard error inflation (Belsley et al., 2005). We applied a VIF threshold of 10 and the Pearson 

correlation coefficients to select optimal predictor variables for the aboveground biomass regression 

that minimized data dimensionality and the presence of multicollinearity within the predictor variables, 

and to overcome issues of over fitting. Upon model selections, the estimated aboveground biomass 

was converted back to the original scale, and the root-mean-square error (RMSE, in Mg ha
-1

) was 

calculated. This regression modeling process was carried out for three different groups: (1) all forest 

and woodland plots (n = 39), (2) forest plots only (n = 18), and (3) woodland plots only (n = 21). Upon 

completion of the regression analysis, a 5 fold cross validation analysis was performed. The 

differences in the cross validation results and regression model results were evaluated to ensure 

consistency and accuracy of the regression models. Model performances of aboveground biomass 

estimates derived from lidar and Landsat 8 were evaluated using R
2
, RMSE, and cross validated 

RMSE values. All statistical analyses were performed in RStudio (version 0.97.237). 

 

3. Results 

 

3.1. Lidar-Derived Aboveground Biomass Models 

 

We developed regression models to evaluate the statistical relationship between field-based biomass 

and lidar-derived predictor variables from multiple levels of point densities (Table 2). First, we 

developed biomass models for all forest and woodland plots, and found 8 points/m
2
 was the most 

optimal lidar point density level, producing the lowest error of 38 Mg/ha, which is equal to about 36% of 

average vegetation biomass in our plots (Table 2). Errors associated with the aboveground biomass 

estimates decreased as the lidar point density increased
 
(p = 0.03, Figure 2). 5-fold cross validated 

RMSEs were slightly larger than the model RMSEs as we expected, yet they followed the similar trend 

along the point density gradient (Table 2). Out of all the metrics derived from the airborne lidar dataset, 

skewness and tree density were the two predictors that were consistently selected for high point 

densities including 4 and 8 points/m
2
; whereas standard deviation and kurtosis were the two metrics 

that were consistently used in the models derived from low density lidar data including 0.5, 1, and 2 

points/m
2
 (Table 2).  

 

Second, to account for biomass variation due to broad vegetation types within our study area and to 

test for differences among vegetation types, we developed separate regression models for forest and 

woodland plots (Table 2). Among all the models derived from a gradient of point densities, the smallest 

errors of 32.9 Mg/ha (33%) for the woodland plots and 31.8 Mg/ha (29%) for the forest plots were 
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produced at 8 points/m
2
 density, respectively (Table 2). Both vegetation type-specific models 

demonstrated similar descending trends of estimated errors as lidar point density increases (Figure 2). 

From both model RMSEs and 5-fold cross validated RMSEs, forest plots exhibited a much sharper 

decline of errors of aboveground biomass estimates with increasing lidar point density than the 

woodland plots (Table 2 and Figure 2), indicating that the uncertainty associated with estimating forest 

biomass was more sensitive to source lidar data point density than woodland biomass estimation. 

Different predictor variables were selected for aboveground biomass models for forest and woodland 

plots. Forest aboveground biomass models consistently produced smaller errors than the woodland 

models except for at 1 point/m
2
 (Figure 2). For woodland aboveground biomass models, maximum 

height and tree density were selected in the highest point density derived models at 8 points/m
2
; 

whereas standard deviation was selected in the low point density derived models at 0.5, 1 and 2 

points/m
2
 (Table 2). For forest aboveground biomass models, skewness and kurtosis were selected in 

the higher point density derived models at 4 and 8 points/m
2
; whereas standard deviation and kurtosis 

were selected in the lower point density derived models at 0.5, 1, and 2 points/m
2 

(Table 2). For forest 

plots, kurtosis was proven to be crucial for estimating forest aboveground biomass. Overall, skewness 

and tree density were the most used metrics to estimate aboveground biomass when using high point 

density lidar data, while standard deviation and kurtosis were crucial for estimating aboveground 

biomass at low point density (Figure 3).  

 

3.2. Landsat and Lidar Derived Aboveground Biomass Models Comparison 

 

Using surface reflectance derived from Landsat 8 to estimate aboveground biomass in our study 

area, red and near infrared bands were selected when all plots were combined (Table 2). The 

Landsat 8 based model performed at a similar level to those derived from 0.5 – 1 point/m
2
 lidar data 

when all forest and woodland plots were included (Table 2 and Figure 2). For separate forest and 

woodland models, Landsat 8 performed better in estimating woodland biomass than forest biomass 

(Table 2 and Figure 2). Green band and NDVI were used in the woodland aboveground biomass 

models, while coastal and green bands were selected in the forest models (Table 2). Landsat 8 

produced larger 5-fold validated RMSEs than all lidar-derived models, including the lowest point 

densities of 0.5 – 1 point/m
2
. Thus, Landsat 8 cannot be interchangeably used with lidar data to 

estimate forest or woodland aboveground biomass in our study area. 

 

Table 2: Aboveground Biomass Models Derived from Multiple Lidar Point Densities and Landsat 8 

 

Point Density 

(points/m
2
) 

Predictable Variables
*
 R

2
 

RMSE 

(Mg/ha) 

Percentage of 

Mean Biomass (%) 

5-fold Cross Validated 

RMSE (Mg/ha) 

 All (n = 39)     

8 Skew, Density 0.59 38.1 36.4 38.8 

4 Skew, Density, StdDev 0.53 39.6 37.8 41.2 

2 StdDev, Kurtosis 0.47 43.0 41.1 46.6 

1 StdDev, Kurtosis 0.45 44.7 42.7 48.9 

0.5 StdDev, Kurtosis 0.46 42.7 40.8 46.0 

Landsat 8 Red, Near Infrared 0.52 43.4 41.5 48.7 

 Woodland (n = 21)     

8 Max, Density 0.68 32.9 32.9 37.7 

4 Skew, QuarAvg 0.67 34.4 34.4 43.8 

2 StdDev 0.61 34.2 34.2 38.9 

1 StdDev 0.61 34.9 34.9 40.3 

0.5 StdDev 0.56 37.5 37.5 39.5 

Landsat 8 Green, NDVI 0.68 37.7 37.7 44.0 

 Forest (n = 18)     

8 Skew, Kurtosis 0.52 31.8 28.9 36.1 

4 Skew, Kurtosis, StdDev 0.35 33.5 30.4 40.1 

2 StdDev, Kurtosis, P50 0.26 34.8 31.6 41.3 
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1 StdDev, Kurtosis 0.10 43.1 39.2 49.6 

0.5 StdDev, Kurtosis 0.19 38.9 35.3 47.5 

Landsat 8 Coastal, Green 0.15 41.2 37.4 52.7 
*
Skew = Skewness, Density = Tree density, StdDev = Standard Deviation, Max = Maximum height, QuarAvg = Quartic average, 

P50 = 50
th
 percentile of height 

 

 
 

Figure 2: Errors in Aboveground Biomass Estimates at Various Lidar Point Densities, In Comparison to Landsat 

8. The Errors were presented as the Percentage of the Root-Mean-Square Error (RMSE) of the Mean Biomass. 

Aboveground Biomass were Estimated for All Vegetation (Blue), Woodland (Red), And Forest (Green) from Lidar 

(Circle) and Landsat (Triangle). Linear Regressions between Percentage Error and Point Densities were applied 

to Lidar Derived Aboveground Biomass Models Only. When Landsat Derived Errors were Larger than Those 

Derived from All Lidar Data, Landsat Derived Errors Were Presented at 0 Point Density in the Graph for 

Reference 

 

 
 

Figure 3: Usage of Lidar Derived Metrics in the Aboveground Biomass Models. High Point Density Includes 4 and 

8 Points/m
2
; Low Point Density Includes 0.5, 1, and 2 Points/m

2
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3.3. Cost Considerations for Lidar-Derived Aboveground Biomass Estimates 

 

Since airborne lidar acquisition over large areas is costly, lidar applications necessarily involve cost 

considerations and tradeoffs. The 3DEP is aiming to provide US national lidar coverage in the next 

decade, and the current target quality level (QL) is QL2 at 2 points/m
2
, with an option to upgrade to 

QL1 at 8 points/m
2 

(Sugarbaker et al., 2014). Obviously, the cost of lidar acquisition decreases as 

point density decreases, and uncertainty of aboveground biomass estimates generally increases as 

point density decreases, although not necessarily in a linear fashion or uniformly across vegetation 

types. We used the estimated cost information from 3DEP and the errors of aboveground biomass 

estimates from our plots to evaluate the cost efficiency of lidar acquisitions to estimate aboveground 

biomass at various quality levels (Figure 4). The aboveground biomass estimates error at per dollar 

investment increases linearly as the quality level increases (point density decreases), and QL1 at 8 

points/m
2
 provides the best efficiency for the lidar acquisition investment for aboveground biomass 

applications based on the results from our study area (Figure 4). 

 

 
 

Figure 4: Estimate Errors – Acquisition Cost Ratios for Lidar Derived Aboveground Biomass. The Quality Levels 

(QL) Are: QL1 – 8 Points/m
2
, QL2 – 2 Points/m

2
, and QL3 – 1 Point/m

2
 

 

4. Discussions 

 

4.1. Lidar Point Density 

 

An important question to ask when producing a large scale product such as a Biomass ECV is whether 

high point density lidar data are necessary to obtain sufficiently accurate results. From an operational 

perspective, broad scale (e.g., large regions, statewide, or national) lidar acquisition is usually 

obtained at low point density at <1 point/m
2
 (Cunningham et al., 2004; Veneziano et al., 2012), which 

is much lower than the target forest research lidar acquisitions (1-8 points/m
2
). The next relevant 

question is whether these low point density lidar data that were intended to create elevation datasets 

are adequate to produce biomass products with acceptable accuracies.  

 

From our results, the overall accuracies of biomass estimates increased as the source lidar data point 

density increased, but such trends were not statistically significant for the vegetation type specific 

models, although these trends may become significant given greater sample size. Some other 
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research found that high point density did not add much value to extracting forest canopy profiles at 

the stand level and estimating tree height or volume (Thomas et al., 2006; Goodwin et al., 2006; Lim et 

al., 2008; Jakubowski et al., 2013), unless the point density was simulated at very low levels (< 0.5 

point/m
2
) where the errors grew significantly (Magnusson et al., 2007; Jakubowski et al., 2013). 

Results from analysis of our study area indicated that the optimal point density to achieve the best 

model performance and highest cost efficiency was 8 points/m
2
. These studies are informative for 

evaluating the effects of point density on biomass estimation accuracy, however our random thinning 

approach may approximate but not perfectly replicate lower density data as they would be collected 

using the actual data sampling configurations of a multiple-return lidar sensor. In addition to pulse 

density, other factors of lidar acquisition such as sensors, flying altitudes, pulse repetition frequencies, 

and laser pulse power can also impact forest canopy metrics, although such effects are minor 

(Næsset, 2009; Chasmer et al., 2006). 

 

Because of the rich information of 3-D structures of vegetation from lidar datasets, predictor metrics 

can be readily extracted from lidar datasets, while additional image analysis, personnel and software 

costs can occur while using other data sources. Especially for large areas where image processing 

and analysis workloads increase significantly, lidar can already be less expensive or comparable to 

image data analysis (Johansen et al., 2010). Another advantage of reduced density lidar data is the 

reduction of file size for data processing, especially for a large area such as the national Biomass 

ECV. It has been shown that a 40% reduction in lidar point density with a corresponding significant 

reduction in file size produced biomass estimates comparable to the full lidar dataset (Singh et al., 

2015). 

 

4.2. Lidar Metrics 

 

Evaluation of multiple linear regression models in our analysis illustrated that descriptive statistics 

metrics such as skewness, kurtosis, and standard deviation explained more variance than direct 

canopy height related metrics, indicating that the overall summary of the canopy characteristics 

(kurtosis) and shape of height distribution (skewness) are crucial for aboveground biomass estimates. 

Only one height percentiles metric was selected in one final model for the forest aboveground biomass 

estimates (2 points/m
2
), and maximum height metrics were only used in the woodland aboveground 

biomass models derived from high point density data. Skewness and tree density were the most 

commonly used metrics in aboveground biomass models from the high point density lidar data, 

suggesting that effective estimates of tree density, and therefore accurate biomass estimates, requires 

higher point density lidar data. In contrast, standard deviation and kurtosis were the most commonly 

used metrics in the models derived from low point density lidar data, indicating that the variability of 

height distribution among neighboring points is important to ensure biomass estimate accuracy derived 

from low density lidar data. For woodland plots, it was challenging to select more than one metric 

(standard deviation) to predict woodland aboveground biomass using lower density lidar data at 0.5 – 

2 points/m
2
. Yet, the model performance was not substantially different with one-predictor in the low 

density models, when compared to two-predictor models from high density lidar data (Figure 2). Thus, 

low density lidar data can be used to estimate woodland-dominated areas with reasonably sufficient 

accuracy.  

 

4.3. Aboveground Biomass Model Uncertainty 

 

Quantifying the uncertainty of biomass estimates is crucial for identifying the appropriate data sources 

and algorithms for a potential national Biomass ECV. Errors can be introduced in multiple steps 

including tree measurements, allometric equations development, tree-level aboveground biomass 

prediction, plot-level aboveground biomass estimation, plot-level remote sensing metrics extraction, 

and remote sensing based model development. Although national scale allometric equations exist 

(Chojnacky et al., 2014), localized equations are preferred to reduce errors introduced into the field-
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based biomass estimation (Chen et al., 2015). While the lack of field based biometrics and local 

diameter-based allometric equations limit the operational feasibility of a national Biomass ECV, data 

routinely collected by the U.S. Forest Service’s Forest Inventory and Analysis (FIA) program have 

been successfully used in lidar-based forest biomass and carbon estimates (Johnson et al., 2014). 

Because of the comprehensive national sampling strategy of the FIA data, both training and validation 

sets can be generated from FIA datasets as long as they are independent. For example, national 

forest inventory data, in combination with spaceborne lidar and optical imagery, have been 

successfully used in a recent study to estimate biomass of China at the national scale (Su et al., 

2016). However, mismatches in the timing of observations can be a source of error, as the years in 

which FIA plot surveys are performed can vary widely over large areas, and may rarely be coincident 

with the lidar acquisitions. An additional, potential shortcoming of FIA data for national-scale biomass 

estimation is that information on grassland or shrubland is not provided, and therefore models have 

not been developed to estimate grassland or shrubland biomass at a larger scale. Although grassland 

and shrubland typically have lower aboveground biomass compared to forests and woodlands, large 

geographic coverage and implications for land management decisions (e.g., grazing and fire 

management) makes the accurate estimation of their biomass an important issue. Differences 

between the structure of grasslands and forests/woodlands require different metrics derived from lidar 

to estimate aboveground biomass, and therefore additional research that extends beyond the scope of 

this study is needed.  

 

4.4. Operational Feasibility 

 

Although the 3DEP is aimed at accumulating, over time, airborne lidar data that approaches, if not fully 

achieves, comprehensive national coverage, the current spatial coverage remains far from that goal. In 

the interim, Landsat 8 surface reflectance data with national coverage and free access could be 

considered as an alternative candidate to support the creation of a national Biomass ECV. However, in 

the case of our pilot study area in Arizona, Landsat 8 generally produced higher errors than all lidar-

based models, suggesting it cannot simply be used as a substitute of lidar data sources, although 

additional more sophisticated metrics can be extracted from Landsat data which required further 

processing and computing. Lidar-based vegetation type specific (forest and woodland) models 

produced lower errors than all-vegetation combined. Similar to our results, vegetation type specific 

models improved the aboveground biomass estimates in a mixed Mediterranean forest (García et al., 

2010), and land cover maps have been used with other ancillary data to provide regional biomass 

estimates (Boudreau et al., 2008).  

 

Until national-coverage lidar data are available, a practical approach to a national Biomass ECV 

product is to apply vegetation type specific models using existing land cover data (Stoker et al., 2014; 

Avitabile et al., 2012). In our pilot study area, for woodlands, lower point density lidar (e.g., QL3/QL2) 

were adequate to generate good estimates of woodland aboveground biomass given the small 

difference across point densities. For forested areas in the pilot plots, high point density lidar (e.g., 

QL1) for selected dominate forest species areas will be ideal for ensuring the accuracy of 

aboveground biomass estimates, but lower point density lidar data can also support the production of 

a Biomass ECV. Further, ponderosa pine forests in our pilot study area may require higher point 

density for accurate aboveground biomass estimate because of the “tall and thin” shape of conifer 

trees, and point density requirement may be lower for the broad leaf forests areas elsewhere. In 

addition, the average aboveground biomass in the semi-arid Southwest US is lower than forests in the 

Northeast and Northwest US, and therefore a lower point density may be adequate for other higher 

biomass areas to reach the same overall accuracy target.  

 

Weighing cost and model performance, a high point density operational lidar dataset (e.g., 3DEP QL1) 

provides the most promising avenue to generating sufficiently accurate Biomass ECV products. Yet, 

lower point density lidar data still produced better estimates of aboveground biomass than optical data, 
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and therefore the current QL2 acquisition plan of 3DEP could adequately support the generation of an 

operational Biomass ECV product, with space for improvement in areas where higher density lidar 

datasets at 8 points/m
2
 are available. Even though our study area only consists a number of species 

that are typical of the Southwest US, other research efforts that studied a range of different species 

(evergreen, deciduous, mixed, plantation, etc.) and stand conditions found similar results that point 

density decimation effect was minimal, and therefore low point density lidar data can be sufficient to 

estimate aboveground biomass (Singh et al., 2015; Gonzalez-Ferreiro et al., 2013; Gobakken and 

Næsset, 2008; Thomas et al., 2006). These findings reinforce our view that it is feasible to use the 

operational 3DEP QL2 lidar data to develop vegetation type specific aboveground biomass algorithm 

to create a national scale Biomass ECV given the limitation of current lidar data availability. 

 

5. Conclusion 

 

We compared the effectiveness of lidar data at multiple point densities to estimate aboveground 

biomass for forest and woodland plots on the San Carlos Apache Reservation in the Southwestern 

U.S. In general, estimated errors decrease as the point density increases, reaching a turning point at 8 

points/m
2
 where the best model performance and cost efficiency was achieved. Forest biomass 

estimates were more affected by point density levels than woodlands. Therefore, a high density lidar 

dataset can greatly improve the forest biomass estimates, whereas low density lidar datasets can be 

sufficient to ensure acceptable accuracy levels for estimating woodland biomass.  

 

Although limited in geographic scope, results from our local scale plot-level research nevertheless 

provide insights that can be useful in planning effective, potential strategies for developing and 

implementing a national-scale Biomass ECV product from airborne lidar. Ideally, an operational 

national lidar dataset at 8 points/m
2
 (QL1) would produce quality aboveground biomass estimates for 

forest and woodlands as an operational Biomass ECV. However, such high point density lidar data are 

not yet available at the national scale and the acquisition costs are high. For the near future, we 

recommend using low point density 3DEP QL2 lidar data, where it is available, to develop vegetation 

type specific aboveground biomass models, and leveraging higher point density lidar data for forested 

areas.  

 

This study was conducted in the context of the feasibility of a national Biomass ECV, but it is also 

relevant to land managers who are potentially making decisions about lidar data acquisition 

parameters with a set budget. When considering lidar acquisition over large areas, land managers 

need to make decisions among cost, coverage, density, and accuracy standard. Our plots are located 

on the San Carlos Apache Reservation, where land managers are particularly interested in using lidar 

data to estimate vegetation biomass and carbon stocks to inform land management decisions. Our 

results will enable tribal land managers to make informed decisions on lidar acquisition specifications 

to maximize the data collection area and ensure reliable results. 
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