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Abstract Hyperspectral remote sensing is widely used for analyzing and estimating the severity of soil 

salinity in arid and semi-arid regions, throughout the world. The present study is an attempt to map the 

various soil salinity severity classes using different hyperspectral indices generated using EO-1 

Hyperion data and Support Vector Machine (SVM) method, in the Mathura region of Indo-Gangetic 

plain of India. Various hyperspectral indices such as Soil Adjusted Vegetation Index (SAVI), 

Desertification Soil Index (DSI), Salinity Index (SI) and Normalized Difference Water Index (NDWI) 

were chosen, generated and effectively used for characterizing and mapping soil salinity severity. Salt 

infestation in the study area was categorized into four classes of normal, slight, moderate, high soil 

salinity. Hyperspectral indices helped in identification of various features like vegetation, waterlogged 

area and soil areas under various classes of soil salinity. The salinity index and desertification soil 

indices were found to respond well to varying degrees of soil salinity. The SVM technique generated 

soil salinity map with overall classification accuracy of 78.13 percent, with a kappa statistic of 0.71. 

The results indicated highest accuracy in high soil salinity class in comparison to other classes, 

attaining producers and users accuracies of 85.71% and 90.0% respectively. Slight saline class 

showed poor producers and users accuracy. The result showed high accuracy for mapping soil salinity 

severity with machine learning classifier like SVM using various indices generated from hyperspectral 

remote sensing data. These generated images can be effectively used in planning of various 

management practices and effective reclamation measures of salt affected soils. 

Keywords Hyperion Hyperspectral Indices; Indo-Gangetic Plains; Salt Salinity Severity; Support 

Vector Machine (SVM) 

 

1. Introduction  

 

Unplanned and unscientific exploitation of land resources to fulfill ever increasing human needs have 

resulted in huge pressure on limited soil resources leading to land degradation. Salinization, 

alkalization, waterlogging and loss of soil organic matter are the major processes which causes 

degradation and leading to formation of degraded lands. Soil salinity is one of the main environmental 

factors that adversely affect plant growth and development. Salinization and alkalization processes 

resulting in salt-affected soils (Metternicht and Zinck, 2003) are major cause of land degradation in the 
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hot arid and semi-arid regions where majority of agricultural lands comes under irrigation. These arid 

and semi-arid regions experience very low amount of precipitation which makes impossible for 

maintaining a regular percolation of water through the soil and the subsequent removal of excessive 

soluble salts. Under such a climatic condition, soluble salts get accumulated in the surface soil, thus 

negatively influencing soil properties and environment ultimately resulting in lowering of soil 

productivity. The consistent identification of salinity forming processes and areal extent of salinity are 

very much essential for sustainable soil management. Salt affected landscapes are very sensitive to 

changes in climatic, edaphic and hydrological conditions in time and space.  

 

Salinization affects about 30% of the world’s total irrigated land and decreases this area approximately 

1-2% per year due to salt infestation (FAO, 2002). Indo-Gangetic plains, major food producing zone of 

the country occupies nearly 49.3 Mha, of which 2.5 Mha land are under various degrees of 

degradation because of salinization and alkalization occurring in the hot arid and semi-arid climates 

(Abrol and Bhumbla, 1971). This salt affected area comes to nearly 25% of the total salt affected area 

(10.1 Mha) of the country. These lands have high concentrations of neutral and alkaline soluble salts 

in the surface and sub-surface soil layers due to additions from the continuous irrigation with water 

containing dissolved salts or salts present at lower depth of the soil transported to the surface 

(Szabolcs, 1989), mainly due to capillary rise and subsequent evaporation from the soil surface. These 

salts adversely influence the various soil properties and thus results in reduction of crop growth, crop 

yields, land productivity and leads to land degradation ultimately (Oosterbaan, et al., 1990; Dehaan 

and Taylor, 2002; Shahbaz and Ashraf, 2013). Information regarding the spatial distribution, severity 

and temporal expansion of salinity are critical for monitoring, planning and implementation of various 

management strategies for the reclamation of these soils. 

 

Traditional methods for identifying and monitoring of salt affected soils can map soil salinity severity 

only up to a certain extent. They are expensive, time consuming and require large number of samples 

from an area to characterize spatial variability, which restrict the adoption of these methods for 

studying large and non-uniform areas (Shepherd and Walsh, 2002). Various remote sensing data are 

being widely used in characterization and mapping of salt affected soils including aerial photographs, 

multispectral and hyperspectral remote sensing data (Mitran, et al., 2015). Soil salinity mapping is a 

difficult task to perform because of the high influence of various soil physical and chemical properties 

(e.g. moisture, surface roughness, organic matter) on soil reflectance (Ben-Dor, et al., 2002; Shrestha, 

et al., 2005). Earlier, monitoring and mapping of salt affected lands in relatively large areas were 

widely and successfully undertaken using broadband multispectral data (Toth, et al., 1991; Mougenot 

and Pouget, 1993). But nowadays, use of broadband multispectral data for soil salinity studies is very 

less and restricted because of spatial and spectral resolution limitations that mask details in the 

spectral signatures of various kinds of salt-affected lands (Allbed and Kumar, 2013). Various problems 

are also there which interfere in the detection of salt-affected soils using remote sensing, i.e. 

sometimes the process goes undetected, especially when the soils are not fully affected by salt 

minerals, the physical boundaries separating areas of different degrees of salinity are fuzzy, the 

salinization process occurs throughout the soil profile along with soil surface, which the optical sensors 

cannot detect (Ghosh, et al., 2012). These limitations calls for the use of hyperspectral remote sensing 

data in soil salinity studies for better detection and mapping, because of its ability to identify 

characteristic absorption bands in salt affected soils and the associated minerals and related spectral 

features (Csillag, et al., 1993; Farifteh and Van der Meer, 2005; Shi and Huang, 2007) 

 

The mapping of salt-affected soils using hyperspectral satellite data has been investigated by several 

workers like Taylor and Dehaan (2003) and Dutkiewicz, et al. (2009). Dehaan and Taylor (2002) 

evaluated the utility of field-derived spectra of saline soils and related vegetation for characterizing and 

mapping the spatial distribution of irrigation-induced soil salinization. Wu, et al. (2010) used Artificial 

Neural Network (ANN) and Support Vector Machine (SVM) classification methods for mapping land 

degradation using Hyperion data and found that SVM classification achieved higher accuracy than 
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ANN method. Ghosh, et al. (2012) has successfully used linear unmixing and SAM methods for 

mapping soil salinity using Hyperion remote sensing data. This spectral unmixing technique helps in 

mapping of fractions of various salt classes in each pixel. Hamzeh, et al. (2012) investigated the ability 

of hyperspectral Hyperion data for mapping salinity stress in sugarcane fields. They used different 

classifications such as Support Vector Machine (SVM), Spectral Angle Mapper (SAM), Minimum 

Distance (MD) and Maximum Likelihood (ML) with different band combinations and classified soil 

salinity into three classes (low, moderate and high salinity). Their results indicated that salinity map 

generated by SVM classification, using all bands as input data yielded good accuracy compared to 

other methods. SVMs are highly appealing in the field of remote sensing because of their ability to 

handle small training data sets successfully, often producing higher classification accuracy compared 

to the methods used traditionally (Mantero, et al., 2005) The benefit of SVMs is because of the 

learning process, which follows what is known as structural risk minimization. Under this, classification 

error on unseen data is minimized by SVMs without any prior assumptions made on the probability 

distribution of the data. Taking all these factors into consideration, the present study was undertaken 

with the objective of (i) mapping soil salinity severity in the area using SVM technique. Various spectral 

indices generated using hyperion hyperspectral remote sensing data served as input data layers for 

carrying out mapping using SVM technique. 

 

2. Study Area 

 

The study area is a part of Indo-Gangetic plains and lies between 26
°
76' N to 27

°
62'N latitudes and 

77
°
31'E to 77

°
59'E longitudes in Mathura district of Uttar Pradesh, India (Figure 1). The area 

experiences semi-arid climate with intense hot summers, cold winter and general dryness throughout 

the year except during south-west monsoon period from July to September. The mean annual 

temperature is 24.4
°
C; maximum temperature in May goes up to 45

°
C and mean minimum temperature 

up to 14
°
C in the month of January. The average annual rainfall is 505 mm and 92 % of it is received 

during the rainy season comprising July, August and September months of the year. The area is an 

irrigation command area and has a good network of irrigation canals, distributaries and minors to 

irrigate the fields. The Yamuna River passes very close to the area. The soils in the area are 

developed over the alluvium deposited by Yamuna River. The landscape is nearly level to very gentle 

sloping with moderate to poor surface drainage. The surface soil texture in the area ranged from silt 

loam to clay loam. The salt affected soils in the area are characterized as saline-alkali soils and belong 

to Fine Loamy Typic Natrustalfs and Typic Ustepts families. These lands are intensively cultivated for 

wheat, rice, mustard, sugarcane, sorghum, etc. crops with irrigation facilities from canals and wells, 

irrespective of their high salinity status.  

 

 
 

Figure 1: Location Map of the Study Area 
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3. Material and Methods 

 

3.1. Satellite Data Used 

 

1) Space borne hyperspectral remote sensing data (EO-1 Hyperion) acquired on May 5, 2005 

was used for the study (Table 1), as it’s the summer month and fields are clear with no crop. 

The Level 1 radiometric (L1R) product used in the study had 242 bands with a spectral 

resolution of 10 nm, spatial resolution of 30 m and 12 bit radiometric quantization. Only 196 

bands out of 242 bands were calibrated. These bands belong to visible-to-near-infrared 

(VNIR) (bands 8–57) and shortwave-infrared (SWIR) wavelength regions (bands 77–24) (Datt, 

et al., 2003). All bands were not calibrated due to low detector response and uncalibrated 

bands thus were set to zero. 

 

Table 1: Hyperion Sensor (EO-1) Characteristics 

 

EO-1launched 21 November 2000 

Altitude 705 km 

Swath 7.5 km 

Spatial resolution 30 meter 

Spectral band width 10 nm (nominal) 

Radiometric resolution 12 bits 

Spectral channels 220 unique channels 

VNIR range 70 channels, 356-1058 nm 

SWIR range 172 channels, 852-2577 nm 

No. of columns 3400 

No. of lines 256 

Instantaneous field of view (IFOV) 42.4 microradian 

 

2) Indian Remote Sensing (IRS) LISS IV (Linear Imaging Self Scanner) satellite data: The data 

acquired on May 6, 2007 (Table 2) and standard false color composite (FCC) at 1:25,000 

scale was generated for visual interpretation of salt affected soils and to locate these soils for 

soil sampling during field survey. 

 

Table 2: IRS P6 Sensor Specifications 

 

Altitude (km) 817 

Spatial resolution (m) 5.8 

Swath (km) 23.9 (Mx) 

Spectral bands B2: 0.52-0.59 

B3: 0.62-0.68 

B4: 0.77-0.86 

Quantization (bits) 7 

Sensor Push broom 

Focal length (mm) 982 

Repeat cycle (days) 5 

 

3.2. Software Used 

 

ENVI 5.0 (Environment for Visualizing Images, Research System, Inc) software was used for digital 

image analysis of the hyperspectral satellite data. It offers ‘‘Hyperion tool kit’’ to analyze hyperspectral 

satellite data. ERDAS Imagine 9.2 ver. Image processing software was used for the accuracy 

assessment of spectral index classified images. ArcGIS 10.0 developed by ESRI, Inc. was also used 

for visualization of final maps. 
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4. Methodology 

 

The brief methodology adopted for the present study is shown in Figure 2. 

 

 
 

Figure 2: Brief Methodology Adopted in the Study 

 

4.1. Hyperion Data Processing 

 

Hyperion data is initially processed by the EO-1 product generation system (EPGS) and distributed in 

different processing levels. In this study, radiometrically corrected level 1R product (L1R) of Hyperion 

has been used. 

 

The “Hyperion tool kit” was used to import the L1R product from HDF format to ENVI standard format 

in ENVI 5.0 (Environment for Visualizing Images, Research System, Inc). The flag Mask correction 

option available in the tool kit was used to correct vertical stripping, stripping was removed by 

replacing the bad values with the average of the good values on either side of them (Figure 3). The 

image was then visually checked to identify the left over bad columns. Out of the calibrated bands of 

Hyperion (band 8 to band 55, band 56 and band 57, band 79 to band 224), 152 bands from 196 

unique bands were selected by spectral subsetting. Bands in the high water absorption range from 

1400 nm to 1900 nm and bands which had high acceptable noise and streaking were removed from 

further processing. These selected bands were again visually inspected for bad columns to eliminate 

the stripping errors (Table 3). 
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Figure 3: Hyperion Level 1R Band 9 of Mathura Dataset (A) Band With Stripes With Low DN Values in Bold (B) 

De-Stripped Band With Changed DN Values after Applying Local Filter 

 

Table 3: Location of Bad Columns in Spectrally Subsetted L1R Product 

 

Bands Bad Columns 

9 6,10,12,13,67,68, 114 

10 114, 199 

27 46,47 

20 19,20 

54 22,23,24,25 

55 12,13,24,25 

56 10,11,12,13,17,19,24,36,37,38,39 

83 59,94,95,120,121 

84 48,49,58,70,71,86,87,88,94,95,234 

87 233,234 

88 25,51,52,76,99,100,144,145,157,204, 

97 35,36,79,80,88,89.116,117,118,157,158 

99 15,16,34,35,49,50,51,61,62,73,74,129,130,131,155,156,246,249,250 

100 26,38,51,52,67,68,87,88,203,204,228,229,247,248 

102 8,27,32 

118 16,222,223 

133 16,36,174,253,254,255 

195 50,56,57 

83-119 256 

133-164 256 

183-184 256 

188-220 256 

 

4.2. Atmospheric Correction 

 

Remote sensing measurements of the Earth’s surface are strongly influenced by atmosphere. Water 

vapour with smaller contributions from carbon dioxide, ozone and other gases dominates the 

absorption by atmospheric gases. In order to only retrieve the surface reflectance and study the 

reflectance properties, the atmospheric components have to be removed. In the study area, ENVI’s 
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Fast Line-of-sight Atmospheric Analysis of Spectral Hyper-cubes (FLAASH) module was applied on 

Hyperion data for atmospheric correction. The various parameters used in FLAASH atmospheric 

correction are given in Table 4. FLAASH is a first-principles atmospheric correction tool that corrects 

wavelengths on the visible through near-infrared and shortwave infrared regions up to 3 μm. FLAASH 

requires input image in BIL format and ASCII file of scale factors number. The scale factors for the 

VNIR and SWIR bands are 400 and 800 respectively in the case of nanometers (nm) while 40 and 80 

for μm. The study area is rural and it falls in tropical climate. Thus, tropical atmospheric and rural 

aerosol model of FLAASH were selected and other parameters were defined based on metadata of 

the Hyperion image File. The change in the spectral reflectance curve of vegetation area before and 

after FLAASH correction can be seen in Figure 4. 

 

 
 

Figure 4: Spectral Curve of Vegetation (a) before FLAASH and (b) after FLAASH 

 

Table 4: Parameters used in FLAASH Atmospheric Correction 

 

Parameter  Parameter  

Scene Center Location 27.2, 77.45 Initial visibility 40 km 

Sensor Altitude 705km Spectral polishing Yes 

Ground Elevation 0.18m Width(no. of bands) 9 

Pixel Size 30m Wavelength Recalibration No 

Flight Date 15.5.2005 Aerosol Retrieval Height 1.5km 

Flight Time 5h 11m 58sec CO2 Mixing Ratio (ppm) 390ppm 

Atmospheric Model Tropical Use Adjacency correction Yes 

Water Retrieval Yes Modtran resolution 5 cm
-1

 

Water Absorption Feature 1135nm Modtran Multiscatter Model Scaled-DISORT 

Aerosol Model Rural No. of Disort streams 8 

Aerosol Retrieval None Output reflectance factor 10000 

 

4.3. Geometric Correction 

 

The satellite images (Hyperion and LISS-IV) were geometrically registered with geo-referenced 

Landsat ETM+ / SOI toposheet (1:50,000) using nearest neighbor resampling with first order 

polynomial equation. The image was projected with Lambert Conformal Conic projection in WGS-84 

spheroid and datum (Figure 5). 
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Figure 5: FCC Image of Study Area with Soil Sampling Points 

 

4.4. Soil Sample Collection, Analysis and Characterization 

 

A detailed description about the soil sample collection, analysis and characterization are given by 

Suresh Kumar et al (2015). In total, 64 soil samples were collected from three transects of which 14 

were normal, 14 were slight, 15 were moderate and 21 were high saline soils based on EC values. 

The general physico-chemical properties of the collected samples are given in Table 5.  

 

Table 5: Physico-Chemical Characteristics of the Study Area 

 

Soil Type 

(No. of Samples) 

Texture Organic Carbon (%) pH (1:2) EC(1:2) (dS/m) 

Normal (14) Loam-clay loam 0.16-1.32 6.87-8.22 0.16-3.07 

Slight (14) Loam-silt loam 0.16-0.93 7.68-8.40 4.28-7.70 

Moderate (15) Loam-clay loam 0.31-0.62 8.59 – 10.02 8.10 – 10.0 

High (21) Loam-silty clay loam 0.16-0.86 8.67- 10.20 10.21 – 30.41 

 

4.5. Spectral Indices Used in the Study 

 

The various hyperspectral indices used in the study are listed in Table 6.  

 

Table 6: The Spectral Indices Used in this Study 

 

Spectral Indices Equation Reference 

Soil Adjusted Vegetation Index (SAVI) SAVI = (1+L)(R
864

-R
660 

)/(R
864

+R
660

 + L) Huete (1988) 

Normalized Difference Water Index (NDWI) (R
864nm 

- R
1245nm 

)/ (R
864nm 

+ R
1245nm

) Gao (1996) 

Desertification Soil Index (DSI) (R
1648nm

 – R
498nm

)/(R
1648nm

 - R
2203nm 

+0.2) Wu et al (2010) 

Salinity Index (SI) √R
436.99nm

* R
630.32nm

 Suresh Kumar et al 

(2015) 
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4.5.1. Soil Adjusted Vegetation Index (SAVI) 

 

In areas where there are considerable soil brightness variations resulting from moisture differences, 

roughness variations, shadow, or organic matter differences, there are soil-induced influences on the 

vegetation index values (Huete, 1988). To account for such changes in soil optical properties, soil-

adjusted vegetation indices have been developed. One of the widely used index is the Soil-Adjusted 

Vegetation Index (SAVI) given by Huete (1988), which incorporates a canopy background adjustment 

factor, L: 

 

SAVI = (1+L) (R
864

-R
660 

)/(R
864

+R
660

 + L)                         (1) 

 

Where, R is the reflectance at the wavelengths denoted by the subscripts. L is a function of vegetation 

density and its determination requires knowledge of amount of vegetation present in the area. 

Determining the exact value of L for a particular situation involves iteration procedure. However, Huete 

(1988) suggested an optimal value of L=0.5 to account for first-order soil background variations, as it 

was shown to reduce soil noise considerably throughout a wide range of vegetation densities. 

 

4.5.2. Normalized Difference Water Index (NDWI) 

 

NDWI given by Gao (1996) was used in this study to differentiate the waterlogged areas from soil and 

vegetation areas. Exceptionally high values of NDWI indicate clear water surfaces and thus water 

logging can be effectively identified. Soil contribution to NDWI results in negative values whereas 

vegetation contribution results in positive values (Gao, 1996) 

 

NDWI = (R
864nm 

- R
1245nm)

/ (R
864nm 

+ R
1245nm

)                    (2) 

 

4.5.3. Desertification Soil Index (DSI) 

 

It was given by Wu, et al. (2010) and was used in this study to assess the severity of soil degradation, 

based on the reflectance properties of the soil. The rationale behind the selection of reflectance at 

these particular wavelengths is described by Wu, et al. (2010). 

 

DSI= (R
1648nm

 – R
498nm

)/(R
1648nm

 - R
2203nm 

+0.2)                 (3) 

 

4.5.4 Salinity Index (SI): Salinity index used in the study was proposed by Suresh Kumar, et al. (2015). 

This particular relationship was developed using the correlation studies between soil reflectance at 

various spectral bands and the salinity parameters (ECe). The calibration, validation and development 

of this salinity index was done using the same soil data set used in our study  

 

SI = √R
436.99nm

* R
630.32nm                                                  (4) 

 

4.6. Support Vector Machine (SVM) 

 

Support vector machines (SVMs) is a supervised non-parametric statistical learning technique, 

therefore makes no assumption about the probability distributions of the underlying data (analyzed 

data). In its original formulation (Vapnik, 1979), the method was presented with a set of labeled data 

instances and the SVM training algorithm aim to find a hyperplane that separate the dataset into a 

discrete predefined number of classes in a fashion consistent with the training examples. It separates 

the classes with a decision surface that maximizes the margin between the classes and thus 

minimizing misclassifications. The surface is often called the optimal separation hyperplane, and the 

data points closest to the hyperplane are called support vectors. These support vectors forms the key 
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elements of the training set. The essential idea underlying SVM is mapping the samples to the high 

dimensional kernel space non-linearly, and establishing the optimal hyperplane of low dimension in 

high dimensional kernel space (Mei, 2004). 

 

In case of remote sensing data, SVM classification tries to identify the class associated with each 

pixel. It’s useful in classification of complex and noisy data, as good results are obtained generally. 

They have the ability to successfully handle small training data sets and producing higher classification 

accuracies in comparison to traditional methods. Different types of kernels are applied in SVM method 

which can produce different types of training machines with non-linear hyperplanes and different 

results. Generally, four types of kernels are there: linear, polynomial, radial basis function (RBF) and 

sigmoid (ENVI, 2012). Of these RBF kernel was used in this study (Equation 5), as it yields higher 

accuracies in most of the cases,  

 

K(xi,xj)=exp(-Ɣǁxi-xjǁ
2
), Ɣ>0  (RBF)                          (5) 

 

Where K(xi,xj) is called kernel function; xi and, xj are training vectors 

 

5. Results and Discussion 

 

5.1. Soil Salinity Severity Mapping 

 

All the four spectral index images were combined to form a new multiple band image using ENVI 

software. To develop salinity evaluation criteria, values of spectral indices were extracted from the well 

distributed GCP points, using the point map showing the various sampling sites. The range of spectral 

index values of various soil salinity classes were established as a salinity evaluation criteria (Table 7). 

SAVI sensitive to green vegetation was used to identify the healthy vegetation present in the study 

area, indicated with high values and confirmed by analyzing the spectral signature with ground truth. 

NDWI is sensitive to soil and vegetation water content and was used to differentiate soil and 

waterlogged areas. Very low NDWI values indicated soil aridity. Salinity index having high correlation 

with electrical conductivity (EC) can easily differentiate various salinity severity classes. Wide variation 

in the salinity index values helped to delineate various salinity classes more precisely. DSI values 

sensitive to degradation status of soil can reflect changes in soil salinity. 

 

Table 7: Range of Spectral Index Values Associated With Various Salinity Classes 

 

 Spectral Indices 

Salinity Classes SAVI NDWI Salinity Index DSI 

Normal >0.24 > -0.023 < 1250 < 4.0 

Slight 0.18-0.24 -0.023 to – 0.055 1250-1450 4.0 – 6.65 

Moderate 0.15-0.18 -0.055 to -0.073 1450-1600 6.65 – 7.8 

High < 0.15 < - 0.073 > 1600 > 7.8 

 

5.1.1. Soil Adjusted Vegetation Index (SAVI) 

 

The SAVI image generated for the entire area showed a maximum value of 0.9 and a minimum of -0.08 

(Figure 6). The area with higher values showed good vegetation cover even in the month of May, thus 

indicating regions having very low salinity. The values corresponding to vegetation areas were verified. 

A threshold value of 0.3 was taken to build mask for vegetation areas. The SAVI values varied under 

various salinity classes (Table 7), indicating the influence of salinity on vegetation. 
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Figure 6: SAVI Image of Study Area 

 

5.1.2. Normalized Difference Water Index (NDWI) 

 

NDWI map of the study area showed a maximum value of 0.35 and minimum of -0.18 (Figure 7). 

Majority of the area had negative NDWI values, indicating contribution of soil and very low moisture in 

soil. Vegetation present in the area showed positive values of low magnitude. A threshold value of 0.1 

was taken to build mask for waterlogged area in the study area. The NDWI of all the soil sampling 

sites were having negative value (Table 7). The NDWI values of highly saline soils were having the 

highest negative values compared to other classes, whereas normal soils have the lowest negative 

values, indicating some vegetation contribution to NDWI values thus driving them towards positive 

values. 

 

 
 

Figure 7: NDWI Map of Study Area 
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5.1.3. Desertification Soil Index (DSI) 

 

DSI map of the study area showed positive values except in waterlogged areas (Figure 8). Higher 

values of DSI indicated high degradation of soil and poor vegetation cover. The range of DSI values 

under various salinity classes are shown in Table 7. With increasing salinity, the DSI values tend to 

increase may be due to the high contribution of salt content to the reflection in the corresponding 

wavelengths. Wu, et al. (2010) reported that the desertic soil has the highest DSI value, the bare land; 

wild grass ground and cultivated land have relatively high values (middle) while the vegetation and 

water bodies had low values. In this case, most of the area had DSI values in the middle range, except 

few points having very high value and waterlogged areas having low DSI values. 

 

 
 

Figure 8: DSI Image of Study Area 

 

5.1.4. Salinity Index (SI) 

 

Salinity Index of the study area showed clear distinction between saline and non-saline or vegetation 

areas (Figure 9). High saline areas are having the highest SI values and normal soils having the least 

values. Suresh Kumar, et al. (2015) reported high correlation between salinity index and electrical 

conductivity values in the study area. It clearly stated that magnitude of the SI values can clearly 

distinguish between different salinity classes. The vegetation as well as waterlogged areas are having 

the least values for salinity index, thus it clearly showed the effect of salt content on reflectance 

properties. 
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Figure 9: SI Map of Study Area 

 

5.2. SVM Technique in Mapping Severity of Soil Salinity 

 

Soil salinity severity map of the area was prepared using the SVM technique (Figure 10). Four spectral 

indices generated were stacked as layers and used for classification using SVM. The area was 

classified into four salinity severity classes i.e., normal, slight, moderate and high salinity classes. The 

region of interests (ROIs) was selected based on the data generated by soil sampling and further 

analysis of collected soil samples. The SVM parameters used in the study were kernel type, pyramid 

parameter and penalty parameter. The kernel type used was Radial Basis Function (RBF), Gamma in 

Kernel function was set to a value equal to the inverse of the number of the spectral bands used in 

classification with parameter defined as 0.25 (4 bands used), penalty parameter- 100, and 

classification probability threshold at 0. The pyramid parameter was set to a value of zero, forcing the 

various indices to be processed at full resolution. These parameters were defined by calibration with 

ground data as well as collected from literature (Wu, et al., 2010). The penalty parameter included in 

SVM allowed a certain degree of misclassification, which was particularly important for non-separable 

training sets. The penalty parameter controls the trade-off between allowing training errors and forcing 

rigid margins. It created a soft margin that permitted some misclassifications, such as it allowed some 

training points on the wrong side of the hyperplane. Increasing the value of the penalty parameter 

increases the cost of misclassifying points and forces the creation of a more accurate model that may 

not generalize well (ENVI, 2012) Classification probability threshold value set the probability that is 

required for the classifier to classify a pixel. Pixels where all rule probabilities are less than this 

threshold are unclassified. Here the value is set as 0, thus classifying all the pixels into one or the 

other class. 
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Figure 10: Soil Salinity Severity Map of Study Area 

 

5.3. Accuracy Assessment 

 

Classification accuracies of various salinity classes using SVM classification are shown in Table 8. A 

total number of 64 ground control points (GCPs) were used for accuracy assessment. 21 nos of GCPs 

belongs to highly salt affected, 15 nos of GCPs to moderately salt affected and 14 nos. of GCPs to 

slightly salt affected and normal soils were taken. The overall classification accuracy obtained was 

78.13%, with a kappa statistic of 0.71. Salinity class wise accuracies were compared and we found 

high accuracies for soils of high salinity in comparison to other classes, attaining producers and users 

accuracies of 85.71% and 90.0% respectively. Slight saline class was having the lowest values for 

both producers and users accuracy, with values of 71.43% and 62.5% respectively, thus lowering the 

overall classification accuracy. The reflectance values of soils under slightly salt affected and normal 

areas were found to be very close and thus might have resulted in the mixing of these soils during 

classification, thus yielding lower accuracies. Whereas, the reflectance spectra of moderately and 

highly salt affected soils were evidently separated from other two classes, and thus had higher 

classification accuracies. The overall result showed that SVM classification approach employed has 

got very promising potential to discriminate various soil salinity severity classes, with high classification 

accuracies, when combined with high spectral resolution hyperspectral remote sensing data. The 

overall high accuracy produced by the SVM classifier may be attributed to the ability of the algorithm to 

identify the optimally separating hyperplanes for classes in comparison to other pixel-based 

techniques (e.g., artificial neural networks) (Licciardi, et al., 2009) which may not be able to find such 

optimal hyperplanes. SVMs are also able to generalize this optimal separating hyperplane to unseen 

samples with the least errors among all separating hyperplanes. This allowed them to produce the 

best class separation at the end of the classification (Huang, et al., 2002) The latter characteristic 

combined with the high spectral information provided by Hyperion at the pixel level resulted in a high 

overall classification accuracy using SVM. 
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Table 8: Accuracy Assessment of Soil Salinity Severity Classification Using SVM 

 

Class Name Reference Classified 
No. of Correct 

Classified 

Producers 

Accuracy 

Users 

Accuracy 

Highly Salt affected 21 20 18 85.71 90.0 

Moderately Salt affected 15 14 11 73.33 78.57 

Slightly Salt 14 16 10 71.43 62.5 

Normal Soil 14 14 11 78.57 78.57 

Overall Classification Accuracy = 78.13% 

Overall Kappa Statistics = 0.71 

 

6. Conclusions 

 

Hyperspectral remote sensing data is widely used in studies related to soil surface characterization 

and soil properties mapping especially, soil salinity severity. This forms a major remote sensing data 

source because of the high amount of information it can derive due to its high spatial as well as 

spectral resolution. It enables detailed study of various soil properties, which are not possible using 

multispectral remote sensing data. Various techniques like linear spectral unmixing, partial least 

square regression model, stepwise regression model, spectral angle mapper etc have been 

successfully used for studying soil salinity, using hyperspectral remote sensing data. Hyperspectral 

indices like SAVI, DSI, SI and NDWI were used for characterizing different classes of soil salinity. The 

results showed that these spectral indices are effective in distinguishing between various categories of 

salt affected soils. Among the four spectral indices used, Salinity index (SI) and Desertification Soil 

Index (DSI) were found to be more sensitive and thus respond very well to varying degrees of soil 

salinity and can be effectively used for clear distinction of various salinity classes. These indices when 

used for mapping of soil salinity severity using SVM method yielded maps of considerable accuracy. 

Soil salinity map showing different degrees of salinity prepared using SVM method achieved an overall 

accuracy of 78.13%, with the highest accuracies in case of highly salt affected soils and the least 

accuracies in slightly salt affected soil. It clearly points to the fact that soil salinity will make 

considerable changes in reflectance properties, only when present at certain higher amounts. At lower 

amounts of salinity, there are chances that the reflectance of normal as well as slightly salt affected 

soils will get mixed up and become indistinguishable resulting in errors during mapping. The validation 

of the accuracy assessment revealed reliable salinity severity class maps and correlate significantly 

with actual field conditions throughout the study area. The soil salinity severity map will help the 

planning and implementation of various soil management strategies for the effective reclamation of 

these soils and thereby improving crop production and effective utilization of land resources. 
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